要使計算機能完成人們預定的工作,首先必須為如何完成預定的工作設計一個算法,然后再根據(jù)算法編寫程序。計算機程序要對問題的每個對象和處理規(guī)則給出正確詳盡的描述,其中程序的數(shù)據(jù)結構和變量用來描述問題的對象,程序結構、函數(shù)和語句用來描述問題的算法。算法數(shù)據(jù)結構是程序的兩個重要方面。
算法是問題求解過程的精確描述,一個算法由有限條可完全機械地執(zhí)行的、有確定結果的指令組成。指令正確地描述了要完成的任務和它們被執(zhí)行的順序。計算機按算法指令所描述的順序執(zhí)行算法的指令能在有限的步驟內(nèi)終止,或終止于給出問題的解,或終止于指出問題對此輸入數(shù)據(jù)無解。
通常求解一個問題可能會有多種算法可供選擇,選擇的主要標準是算法的正確性和可靠性,簡單性和易理解性。其次是算法所需要的存儲空間少和執(zhí)行更快等。
算法設計是一件非常困難的工作,經(jīng)常采用的算法設計技術主要有迭代法、窮舉搜索法、遞推法、貪婪法、回溯法、分治法、動態(tài)規(guī)劃法等等。另外,為了更簡潔的形式設計和藐視算法,在算法設計時又常常采用遞歸技術,用遞歸描述算法。
一、迭代法
迭代法是用于求方程或方程組近似根的一種常用的算法設計方法。設方程為f(x)=0,用某種數(shù)學方法導出等價的形式x=g(x),然后按以下步驟執(zhí)行:
(1) 選一個方程的近似根,賦給變量x0;
。2) 將x0的值保存于變量x1,然后計算g(x1),并將結果存于變量x0;
(3) 當x0與x1的差的絕對值還小于指定的精度要求時,重復步驟(2)的計算。
若方程有根,并且用上述方法計算出來的近似根序列收斂,則按上述方法求得的x0就認為是方程的根。上述算法用C程序的形式表示為:
【算法】迭代法求方程的根
{ x0=初始近似根;
do {
x1=x0;
x0=g(x1); /*按特定的方程計算新的近似根*/
} while ( fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f\n”,x0);
}
迭代算法也常用于求方程組的根,令
X=(x0,x1,…,xn-1)
設方程組為:
xi=gi(X) (I=0,1,…,n-1)
則求方程組根的迭代算法可描述如下:
【算法】迭代法求方程組的根
{ for (i=0;i x[i]=初始近似根;
do {
for (i=0;i y[i]=x[i];
for (i=0;i x[i]=gi(X);
for (delta=0.0,i=0;i if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]);
} while (delta>Epsilon);
for (i=0;i printf(“變量x[%d]的近似根是 %f”,I,x[i]);
printf(“\n”);
}
具體使用迭代法求根時應注意以下兩種可能發(fā)生的情況:
。1) 如果方程無解,算法求出的近似根序列就不會收斂,迭代過程會變成死循環(huán),因此在使用迭代算法前應先考察方程是否有解,并在程序中對迭代的次數(shù)給予限制;
。2) 方程雖然有解,但迭代公式選擇不當,或迭代的初始近似根選擇不合理,也會導致迭代失敗。
二、窮舉搜索法
窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,并從眾找出那些符合要求的候選解作為問題的解。
【問題】 將A、B、C、D、E、F這六個變量排成如圖所示的三角形,這六個變量分別取[1,6]上的整數(shù),且均不相同。求使三角形三條邊上的變量之和相等的全部解。如圖就是一個解。
程序引入變量a、b、c、d、e、f,并讓它們分別順序取1至6的證書,在它們互不相同的條件下,測試由它們排成的如圖所示的三角形三條邊上的變量之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當這些變量取盡所有的組合后,程序就可得到全部可能的解。細節(jié)見下面的程序。
【程序1】
# include
void main()
{ int a,b,c,d,e,f;
for (a=1;a<=6;a++)
for (b=1;b<=6;b++) {
if (b==a) continue;
for (c=1;c<=6;c++) {
if (c==a)||(c==b) continue;
for (d=1;d<=6;d++) {
if (d==a)||(d==b)||(d==c) continue;
for (e=1;e<=6;e++) {
if (e==a)||(e==b)||(e==c)||(e==d) continue;
f=21-(a+b+c+d+e);
if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) {
printf(“%6d,a);
printf(“%4d%4d”,b,f);
printf(“%2d%4d%4d”,c,d,e);
scanf(“%*c”);
}
}
}
}
}
}
按窮舉法編寫的程序通常不能適應變化的情況。如問題改成有9個變量排成三角形,每條邊有4個變量的情況,程序的循環(huán)重數(shù)就要相應改變。
對一組數(shù)窮盡所有排列,還有更直接的方法。將一個排列看作一個長整數(shù),則所有排列對應著一組整數(shù)。將這組整數(shù)按從小到大的順序排列排成一個整數(shù),從對應最小的整數(shù)開始。按數(shù)列的遞增順序逐一列舉每個排列對應的每個整數(shù),這能更有效地完成排列的窮舉。從一個排列找出對應數(shù)列的下一個排列可在當前排列的基礎上作部分調(diào)整來實現(xiàn)。倘若當前排列為1,2,4,6,5,3,并令其對應的長整數(shù)為124653。要尋找比長整數(shù)124653更大的排列,可從該排列的最后一個數(shù)字順序向前逐位考察,當發(fā)現(xiàn)排列中的某個數(shù)字比它前一個數(shù)字大時,如本例中的6比它的前一位數(shù)字4大,這說明還有對應更大整數(shù)的排列。但為了順序從小到大列舉出所有的排列,不能立即調(diào)整得太大,如本例中將數(shù)字6與數(shù)字4交換得到的排列126453就不是排列124653的下一個排列。為了得到排列124653的下一個排列,應從已經(jīng)考察過的那部分數(shù)字中選出比數(shù)字大,但又是它們中最小的那一個數(shù)字,比如數(shù)字5,與數(shù)字4交換。該數(shù)字也是從后向前考察過程中第一個比4大的數(shù)字。5與4交換后,得到排列125643。在前面數(shù)字1,2,5固定的情況下,還應選擇對應最小整數(shù)的那個排列,為此還需將后面那部分數(shù)字的排列順序顛倒,如將數(shù)字6,4,3的排列順序顛倒,得到排列1,2,5,3,4,6,這才是排列1,2,4,6,5,3的下一個排列。按以上想法編寫的程序如下。
【程序2】
# include
# define SIDE_N 3
# define LENGTH 3
# define VARIABLES 6
int A,B,C,D,E,F;
int *pt[]={&A,&B,&C,&D,&E,&F};
int *side[SIDE_N][LENGTH]={&A,&B,&C,&C,&D,&E,&E,&F,&A};
int side_total[SIDE_N];
main{}
{ int i,j,t,equal;
for (j=0;j *pt[j]=j+1;
while(1)
{ for (i=0;i { for (t=j=0;j t+=*side[i][j];
side_total[i]=t;
}
for (equal=1,i=0;equal&&i if (side_total[i]!=side_total[i+1] equal=0;
if (equal)
{ for (i=1;i printf(“%4d”,*pt[i]);
printf(“\n”);
scanf(“%*c”);
}
for (j=VARIABLES-1;j>0;j--)
if (*pt[j]>*pt[j-1]) break;
if (j==0) break;
for (i=VARIABLES-1;i>=j;i--)
if (*pt[i]>*pt[i-1]) break;
t=*pt[j-1];* pt[j-1] =* pt[i]; *pt[i]=t;
for (i=VARIABLES-1;i>j;i--,j++)
{ t=*pt[j]; *pt[j] =* pt[i]; *pt[i]=t; }
}
}
從上述問題解決的方法中,最重要的因素就是確定某種方法來確定所有的候選解。下面再用一個示例來加以說明。
【問題】 背包問題
問題描述:有不同價值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過指定的限制重量,但選中物品的價值之和最大。
設n個物品的重量和價值分別存儲于數(shù)組w[ ]和v[ ]中,限制重量為tw?紤]一個n元組(x0,x1,…,xn-1),其中xi=0 表示第i個物品沒有選取,而xi=1則表示第i個物品被選取。顯然這個n元組等價于一個選擇方案。用枚舉法解決背包問題,需要枚舉所有的選取方案,而根據(jù)上述方法,我們只要枚舉所有的n元組,就可以得到問題的解。
顯然,每個分量取值為0或1的n元組的個數(shù)共為2n個。而每個n元組其實對應了一個長度為n的二進制數(shù),且這些二進制數(shù)的取值范圍為0~2n-1。因此,如果把0~2n-1分別轉(zhuǎn)化為相應的二進制數(shù),則可以得到我們所需要的2n個n元組。
【算法】
maxv=0;
for (i=0;i<2n;i++)
{ B[0..n-1]=0;
把i轉(zhuǎn)化為二進制數(shù),存儲于數(shù)組B中;
temp_w=0;
temp_v=0;
for (j=0;j { if (B[j]==1)
{ temp_w=temp_w+w[j];
temp_v=temp_v+v[j];
}
if ((temp_w<=tw)&&(temp_v>maxv))
{ maxv=temp_v;
保存該B數(shù)組;
}
}
}
三、遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規(guī)模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能采用遞推法構造算法的問題有重要的遞推性質(zhì),即當?shù)玫絾栴}規(guī)模為i-1的解后,由問題的遞推性質(zhì),能從已求得的規(guī)模為1,2,…,i-1的一系列解,構造出問題規(guī)模為I的解。這樣,程序可從i=0或i=1出發(fā),重復地,由已知至i-1規(guī)模的解,通過遞推,獲得規(guī)模為i的解,直至得到規(guī)模為N的解。
【問題】 階乘計算
問題描述:編寫程序,對給定的n(n≦100),計算并輸出k的階乘k!(k=1,2,…,n)的全部有效數(shù)字。
由于要求的整數(shù)可能大大超出一般整數(shù)的位數(shù),程序用一維數(shù)組存儲長整數(shù),存儲長整數(shù)數(shù)組的每個元素只存儲長整數(shù)的一位數(shù)字。如有m位成整數(shù)N用數(shù)組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存儲長整數(shù)N的位數(shù)m,即a[0]=m。按上述約定,數(shù)組的每個元素存儲k的階乘k!的一位數(shù)字,并從低位到高位依次存于數(shù)組的第二個元素、第三個元素……。例如,5!=120,在數(shù)組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數(shù)是一個3位數(shù),接著是低位到高位依次是0、2、1,表示成整數(shù)120。
計算階乘k!可采用對已求得的階乘(k-1)!連續(xù)累加k-1次后求得。例如,已知4!=24,計算5!,可對原來的24累加4次24后得到120。細節(jié)見以下程序。
# include
# include
# define MAXN 1000
void pnext(int a[ ],int k)
{ int *b,m=a[0],i,j,r,carry;
b=(int * ) malloc(sizeof(int)* (m+1));
for ( i=1;i<=m;i++) b[i]=a[i];
for ( j=1;j<=k;j++)
{ for ( carry=0,i=1;i<=m;i++)
{ r=(i a[i]=r%10;
carry=r/10;
}
if (carry) a[++m]=carry;
}
free(b);
a[0]=m;
}
void write(int *a,int k)
{ int i;
printf(“%4d!=”,k);
for (i=a[0];i>0;i--)
printf(“%d”,a[i]);
printf(“\n\n”);
}
void main()
{ int a[MAXN],n,k;
printf(“Enter the number n: “);
scanf(“%d”,&n);
a[0]=1;
a[1]=1;
write(a,1);
for (k=2;k<=n;k++)
{ pnext(a,k);
write(a,k);
getchar();
}
}
四、遞歸
遞歸是設計和描述算法的一種有力的工具,由于它在復雜算法的描述中被經(jīng)常采用,為此在進一步介紹其他算法設計方法之前先討論它。
能采用遞歸描述的算法通常有這樣的特征:為求解規(guī)模為N的問題,設法將它分解成規(guī)模較小的問題,然后從這些小問題的解方便地構造出大問題的解,并且這些規(guī)模較小的問題也能采用同樣的分解和綜合方法,分解成規(guī)模更小的問題,并從這些更小問題的解構造出規(guī)模較大問題的解。特別地,當規(guī)模N=1時,能直接得解。
【問題】 編寫計算斐波那契(Fibonacci)數(shù)列的第n項函數(shù)fib(n)。
斐波那契數(shù)列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數(shù)有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸算法的執(zhí)行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規(guī)模為n)的求解推到比原問題簡單一些的問題(規(guī)模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數(shù)fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解后,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果后,返回得到fib(n)的結果。
在編寫遞歸函數(shù)時要注意,函數(shù)中的局部變量和參數(shù)知識局限于當前調(diào)用層,當遞推進入“簡單問題”層時,原來層次上的參數(shù)和局部變量便被隱蔽起來。在一系列“簡單問題”層,它們各有自己的參數(shù)和局部變量。
由于遞歸引起一系列的函數(shù)調(diào)用,并且可能會有一系列的重復計算,遞歸算法的執(zhí)行效率相對較低。當某個遞歸算法能較方便地轉(zhuǎn)換成遞推算法時,通常按遞推算法編寫程序。例如上例計算斐波那契數(shù)列的第n項的函數(shù)fib(n)應采用遞推算法,即從斐波那契數(shù)列的前兩項出發(fā),逐次由前兩項計算出下一項,直至計算出要求的第n項。
【問題】 組合問題
問題描述:找出從自然數(shù)1、2、……、n中任取r個數(shù)的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以采用這樣的遞歸思想來考慮求組合函數(shù)的算法。設函數(shù)為void comb(int m,int k)為找出從自然數(shù)1、2、……、m中任取k個數(shù)的所有組合。當組合的第一個數(shù)字選定時,其后的數(shù)字是從余下的m-1個數(shù)中取k-1數(shù)的組合。這就將求m個數(shù)中取k個數(shù)的組合問題轉(zhuǎn)化成求m-1個數(shù)中取k-1個數(shù)的組合問題。設函數(shù)引入工作數(shù)組a[ ]存放求出的組合的數(shù)字,約定函數(shù)將確定的k個數(shù)字組合的第一個數(shù)字放在a[k]中,當一個組合求出后,才將a[ ]中的一個組合輸出。第一個數(shù)可以是m、m-1、……、k,函數(shù)將確定組合的第一個數(shù)字放入數(shù)組后,有兩種可能的選擇,因還未去頂組合的其余元素,繼續(xù)遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節(jié)見以下程序中的函數(shù)comb。
【程序】
# include
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
【問題】 背包問題
問題描述:有不同價值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過指定的限制重量,但選中物品的價值之和最大。
設n件物品的重量分別為w0、w1、…、wn-1,物品的價值分別為v0、v1、…、vn-1。采用遞歸尋找物品的選擇方案。設前面已有了多種選擇的方案,并保留了其中總價值最大的方案于數(shù)組option[ ],該方案的總價值存于變量maxv。當前正在考察新方案,其物品選擇情況保存于數(shù)組cop[ ]。假定當前方案已考慮了前i-1件物品,現(xiàn)在要考慮第i件物品;當前方案已包含的物品的重量之和為tw;至此,若其余物品都選擇是可能的話,本方案能達到的總價值的期望值為tv。算法引入tv是當一旦當前方案的總價值的期望值也小于前面方案的總價值maxv時,繼續(xù)考察當前方案變成無意義的工作,應終止當前方案,立即去考察下一個方案。因為當方案的總價值不比maxv大時,該方案不會被再考察,這同時保證函數(shù)后找到的方案一定會比前面的方案更好。
對于第i件物品的選擇考慮有兩種可能:
。1) 考慮物品i被選擇,這種可能性僅當包含它不會超過方案總重量限制時才是可行的。選中后,繼續(xù)遞歸去考慮其余物品的選擇。
(2) 考慮物品i不被選擇,這種可能性僅當不包含物品i也有可能會找到價值更大的方案的情況。
按以上思想寫出遞歸算法如下:
try(物品i,當前選擇已達到的重量和,本方案可能達到的總價值tv)
{ /*考慮物品i包含在當前方案中的可能性*/
if(包含物品i是可以接受的)
{ 將物品i包含在當前方案中;
if (i try(i+1,tw+物品i的重量,tv);
else
/*又一個完整方案,因為它比前面的方案好,以它作為最佳方案*/
以當前方案作為臨時最佳方案保存;
恢復物品i不包含狀態(tài);
}
/*考慮物品i不包含在當前方案中的可能性*/
if (不包含物品i僅是可男考慮的)
if (i try(i+1,tw,tv-物品i的價值);
else
/*又一個完整方案,因它比前面的方案好,以它作為最佳方案*/
以當前方案作為臨時最佳方案保存;
}
為了理解上述算法,特舉以下實例。設有4件物品,它們的重量和價值見表:
物品 0 1 2 3
重量 5 3 2 1
價值 4 4 3 1
并設限制重量為7。則按以上算法,下圖表示找解過程。由圖知,一旦找到一個解,算法就進一步找更好的佳。如能判定某個查找分支不會找到更好的解,算法不會在該分支繼續(xù)查找,而是立即終止該分支,并去考察下一個分支。
按上述算法編寫函數(shù)和程序如下:
【程序】
# include
# define N 100
double limitW,totV,maxV;
int option[N],cop[N];
struct { double weight;
double value;
}a[N];
int n;
void find(int i,double tw,double tv)
{ int k;
/*考慮物品i包含在當前方案中的可能性*/
if (tw+a[i].weight<=limitW)
{ cop[i]=1;
if (i else
{ for (k=0;k option[k]=cop[k];
maxv=tv;
}
cop[i]=0;
}
/*考慮物品i不包含在當前方案中的可能性*/
if (tv-a[i].value>maxV)
if (i else
{ for (k=0;k option[k]=cop[k];
maxv=tv-a[i].value;
}
}
void main()
{ int k;
double w,v;
printf(“輸入物品種數(shù)\n”);
scanf((“%d”,&n);
printf(“輸入各物品的重量和價值\n”);
for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“輸入限制重量\n”);
scanf(“%1f”,&limitV);
maxv=0.0;
for (k=0;k find(0,0.0,totV);
for (k=0;k if (option[k]) printf(“%4d”,k+1);
printf(“\n總價值為%.2f\n”,maxv);
}
作為對比,下面以同樣的解題思想,考慮非遞歸的程序解。為了提高找解速度,程序不是簡單地逐一生成所有候選解,而是從每個物品對候選解的影響來形成值得進一步考慮的候選解,一個候選解是通過依次考察每個物品形成的。對物品i的考察有這樣幾種情況:當該物品被包含在候選解中依舊滿足解的總重量的限制,該物品被包含在候選解中是應該繼續(xù)考慮的;反之,該物品不應該包括在當前正在形成的候選解中。同樣地,僅當物品不被包括在候選解中,還是有可能找到比目前臨時最佳解更好的候選解時,才去考慮該物品不被包括在候選解中;反之,該物品不包括在當前候選解中的方案也不應繼續(xù)考慮。對于任一值得繼續(xù)考慮的方案,程序就去進一步考慮下一個物品。
【程序】
# include
# define N 100
double limitW;
int cop[N];
struct ele { double weight;
double value;
} a[N];
int k,n;
struct { int flg;
double tw;
double tv;
}twv[N];
void next(int i,double tw,double tv)
{ twv[i].flg=1;
twv[i].tw=tw;
twv[i].tv=tv;
}
double find(struct ele *a,int n)
{ int i,k,f;
double maxv,tw,tv,totv;
maxv=0;
for (totv=0.0,k=0;k totv+=a[k].value;
next(0,0.0,totv);
i=0;
While (i>=0)
{ f=twv[i].flg;
tw=twv[i].tw;
tv=twv[i].tv;
switch(f)
{ case 1: twv[i].flg++;
if (tw+a[i].weight<=limitW)
if (i { next(i+1,tw+a[i].weight,tv);
i++;
}
else
{ maxv=tv;
for (k=0;k cop[k]=twv[k].flg!=0;
}
break;
case 0: i--;
break;
default: twv[i].flg=0;
if (tv-a[i].value>maxv)
if (i { next(i+1,tw,tv-a[i].value);
i++;
}
else
{ maxv=tv-a[i].value;
for (k=0;k cop[k]=twv[k].flg!=0;
}
break;
}
}
return maxv;
}
void main()
{ double maxv;
printf(“輸入物品種數(shù)\n”);
scanf((“%d”,&n);
printf(“輸入限制重量\n”);
scanf(“%1f”,&limitW);
printf(“輸入各物品的重量和價值\n”);
for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value);
maxv=find(a,n);
printf(“\n選中的物品為\n”);
for (k=0;k if (option[k]) printf(“%4d”,k+1);
printf(“\n總價值為%.2f\n”,maxv);
}
五、回溯法
回溯法也稱為試探法,該方法首先暫時放棄關于問題規(guī)模大小的限制,并將問題的候選解按某種順序逐一枚舉和檢驗。當發(fā)現(xiàn)當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規(guī)模要求外,滿足所有其他要求時,繼續(xù)擴大當前候選解的規(guī)模,并繼續(xù)試探。如果當前候選解滿足包括問題規(guī)模在內(nèi)的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規(guī)模,以繼續(xù)試探的過程稱為向前試探。
1、回溯法的一般描述
可用回溯法求解的問題P,通常要能表達為:對于已知的由n元組(x1,x2,…,xn)組成的一個狀態(tài)空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關于n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。
解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。
我們發(fā)現(xiàn),對于許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(jj。因此,對于約束集D具有完備性的問題P,一旦檢測斷定某個j元組(x1,x2,…,xj)違反D中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題P的解,因而就不必去搜索它們、檢測它們;厮莘ㄕ轻槍@類問題,利用這類問題的上述性質(zhì)而提出來的比枚舉法效率更高的算法。
回溯法首先將問題P的n元組的狀態(tài)空間E表示成一棵高為n的帶權有序樹T,把在E中求問題P的所有解轉(zhuǎn)化為在T中搜索問題P的所有解。樹T類似于檢索樹,它可以這樣構造:
設Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。從根開始,讓T的第I層的每一個結點都有mi個兒子。這mi個兒子到它們的雙親的邊,按從左到右的次序,分別帶權xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照這種構造方式,E中的一個n元組(x1,x2,…,xn)對應于T中的一個葉子結點,T的根到這個葉子結點的路徑上依次的n條邊的權分別為x1,x2,…,xn,反之亦然。另外,對于任意的0≤i≤n-1,E中n元組(x1,x2,…,xn)的一個前綴I元組(x1,x2,…,xi)對應于T中的一個非葉子結點,T的根到這個非葉子結點的路徑上依次的I條邊的權分別為x1,x2,…,xi,反之亦然。特別,E中的任意一個n元組的空前綴(),對應于T的根。
因而,在E中尋找問題P的一個解等價于在T中搜索一個葉子結點,要求從T的根到該葉子結點的路徑上依次的n條邊相應帶的n個權x1,x2,…,xn滿足約束集D的全部約束。在T中搜索所要求的葉子結點,很自然的一種方式是從根出發(fā),按深度優(yōu)先的策略逐步深入,即依次搜索滿足約束條件的前綴1元組(x1i)、前綴2元組(x1,x2)、…,前綴I元組(x1,x2,…,xi),…,直到i=n為止。
在回溯法中,上述引入的樹被稱為問題P的狀態(tài)空間樹;樹T上任意一個結點被稱為問題P的狀態(tài)結點;樹T上的任意一個葉子結點被稱為問題P的一個解狀態(tài)結點;樹T上滿足約束集D的全部約束的任意一個葉子結點被稱為問題P的一個回答狀態(tài)結點,它對應于問題P的一個解。
【問題】 組合問題
問題描述:找出從自然數(shù)1、2、……、n中任取r個數(shù)的所有組合。
例如n=5,r=3的所有組合為:
。1)1、2、3 (2)1、2、4 (3)1、2、5
(4)1、3、4 (5)1、3、5 (6)1、4、5
(7)2、3、4 (8)2、3、5 (9)2、4、5
(10)3、4、5
則該問題的狀態(tài)空間為:
E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}
約束集為: x1 顯然該約束集具有完備性。
問題的狀態(tài)空間樹T:
2、回溯法的方法
對于具有完備約束集D的一般問題P及其相應的狀態(tài)空間樹T,利用T的層次結構和D的完備性,在T中搜索問題P的所有解的回溯法可以形象地描述為:
從T的根出發(fā),按深度優(yōu)先的策略,系統(tǒng)地搜索以其為根的子樹中可能包含著回答結點的所有狀態(tài)結點,而跳過對肯定不含回答結點的所有子樹的搜索,以提高搜索效率。具體地說,當搜索按深度優(yōu)先策略到達一個滿足D中所有有關約束的狀態(tài)結點時,即“激活”該狀態(tài)結點,以便繼續(xù)往深層搜索;否則跳過對以該狀態(tài)結點為根的子樹的搜索,而一邊逐層地向該狀態(tài)結點的祖先結點回溯,一邊“殺死”其兒子結點已被搜索遍的祖先結點,直到遇到其兒子結點未被搜索遍的祖先結點,即轉(zhuǎn)向其未被搜索的一個兒子結點繼續(xù)搜索。
在搜索過程中,只要所激活的狀態(tài)結點又滿足終結條件,那么它就是回答結點,應該把它輸出或保存。由于在回溯法求解問題時,一般要求出問題的所有解,因此在得到回答結點后,同時也要進行回溯,以便得到問題的其他解,直至回溯到T的根且根的所有兒子結點均已被搜索過為止。
例如在組合問題中,從T的根出發(fā)深度優(yōu)先遍歷該樹。當遍歷到結點(1,2)時,雖然它滿足約束條件,但還不是回答結點,則應繼續(xù)深度遍歷;當遍歷到葉子結點(1,2,5)時,由于它已是一個回答結點,則保存(或輸出)該結點,并回溯到其雙親結點,繼續(xù)深度遍歷;當遍歷到結點(1,5)時,由于它已是葉子結點,但不滿足約束條件,故也需回溯。
3、回溯法的一般流程和技術
在用回溯法求解有關問題的過程中,一般是一邊建樹,一邊遍歷該樹。在回溯法中我們一般采用非遞歸方法。下面,我們給出回溯法的非遞歸算法的一般流程:
在用回溯法求解問題,也即在遍歷狀態(tài)空間樹的過程中,如果采用非遞歸方法,則我們一般要用到棧的數(shù)據(jù)結構。這時,不僅可以用棧來表示正在遍歷的樹的結點,而且可以很方便地表示建立孩子結點和回溯過程。
例如在組合問題中,我們用一個一維數(shù)組Stack[ ]表示棧。開始?,則表示了樹的根結點。如果元素1進棧,則表示建立并遍歷(1)結點;這時如果元素2進棧,則表示建立并遍歷(1,2)結點;元素3再進棧,則表示建立并遍歷(1,2,3)結點。這時可以判斷它滿足所有約束條件,是問題的一個解,輸出(或保存)。這時只要棧頂元素(3)出棧,即表示從結點(1,2,3)回溯到結點(1,2)。
【問題】 組合問題
問題描述:找出從自然數(shù)1,2,…,n中任取r個數(shù)的所有組合。
采用回溯法找問題的解,將找到的組合以從小到大順序存于a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質(zhì):
(1) a[i+1]>a[i],后一個數(shù)字比前一個大;
。2) a[i]-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數(shù)個數(shù)為r的條件,候選組合從只有一個數(shù)字1開始。因該候選解滿足除問題規(guī)模之外的全部條件,擴大其規(guī)模,并使其滿足上述條件(1),候選組合改為1,2。繼續(xù)這一過程,得到候選組合1,2,3。該候選解滿足包括問題規(guī)模在內(nèi)的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調(diào)整為4,以及以后調(diào)整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由于對5不能再作調(diào)整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調(diào)整為3,并向前試探,得到解1,3,4。重復上述向前試探和向后回溯,直至要從a[0]再回溯時,說明已經(jīng)找完問題的全部解。按上述思想寫成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a[i]=1;
do {
if (a[i]-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j printf(“%4d”,a[j]);
printf(“\n”);
}
a[i]++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
【問題】 填字游戲
問題描述:在3×3個方格的方陣中要填入數(shù)字1到N(N≥10)內(nèi)的某9個數(shù)字,每個方格填一個整數(shù),似的所有相鄰兩個方格內(nèi)的兩個整數(shù)之和為質(zhì)數(shù)。試求出所有滿足這個要求的各種數(shù)字填法。
可用試探發(fā)找到問題的解,即從第一個方格開始,為當前方格尋找一個合理的整數(shù)填入,并在當前位置正確填入后,為下一方格尋找可填入的合理整數(shù)。如不能為當前方格找到一個合理的可填證書,就要回退到前一方格,調(diào)整前一方格的填入數(shù)。當?shù)诰艂方格也填入合理的整數(shù)后,就找到了一個解,將該解輸出,并調(diào)整第九個的填入的整數(shù),尋找下一個解。
為找到一個滿足要求的9個數(shù)的填法,從還未填一個數(shù)開始,按某種順序(如從小到大的順序)每次在當前位置填入一個整數(shù),然后檢查當前填入的整數(shù)是否能滿足要求。在滿足要求的情況下,繼續(xù)用同樣的方法為下一方格填入整數(shù)。如果最近填入的整數(shù)不能滿足要求,就改變填入的整數(shù)。如對當前方格試盡所有可能的整數(shù),都不能滿足要求,就得回退到前一方格,并調(diào)整前一方格填入的整數(shù)。如此重復執(zhí)行擴展、檢查或調(diào)整、檢查,直到找到一個滿足問題要求的解,將解輸出。
回溯法找一個解的算法:
{ int m=0,ok=1;
int n=8;
do{
if (ok) 擴展;
else 調(diào)整;
ok=檢查前m個整數(shù)填放的合理性;
} while ((!ok||m!=n)&&(m!=0))
if (m!=0) 輸出解;
else 輸出無解報告;
}
如果程序要找全部解,則在將找到的解輸出后,應繼續(xù)調(diào)整最后位置上填放的整數(shù),試圖去找下一個解。相應的算法如下:
回溯法找全部解的算法:
{ int m=0,ok=1;
int n=8;
do{
if (ok)
{ if (m==n)
{ 輸出解;
調(diào)整;
}
else 擴展;
}
else 調(diào)整;
ok=檢查前m個整數(shù)填放的合理性;
} while (m!=0);
}
為了確保程序能夠終止,調(diào)整時必須保證曾被放棄過的填數(shù)序列不會再次實驗,即要求按某種有許模型生成填數(shù)序列。給解的候選者設定一個被檢驗的順序,按這個順序逐一形成候選者并檢驗。從小到大或從大到小,都是可以采用的方法。如擴展時,先在新位置填入整數(shù)1,調(diào)整時,找當前候選解中下一個還未被使用過的整數(shù)。將上述擴展、調(diào)整、檢驗都編寫成程序,細節(jié)見以下找全部解的程序。
【程序】
# include
# define N 12
void write(int a[ ])
{ int i,j;
for (i=0;i<3;i++)
{ for (j=0;j<3;j++)
printf(“%3d”,a[3*i+j]);
printf(“\n”);
}
scanf(“%*c”);
}
int b[N+1];
int a[10];
int isprime(int m)
{ int i;
int primes[ ]={2,3,5,7,11,17,19,23,29,-1};
if (m==1||m%2=0) return 0;
for (i=0;primes[i]>0;i++)
if (m==primes[i]) return 1;
for (i=3;i*i<=m;)
{ if (m%i==0) return 0;
i+=2;
}
return 1;
}
int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1},
{2,4,-1},{3,-1},{4,6,-1},{5,7,-1}};
int selectnum(int start)
{ int j;
for (j=start;j<=N;j++)
if (b[j]) return j
return 0;
}
int check(int pos)
{ int i,j;
if (pos<0) return 0;
for (i=0;(j=checkmatrix[pos][i])>=0;i++)
if (!isprime(a[pos]+a[j])
return 0;
return 1;
}
int extend(int pos)
{ a[++pos]=selectnum(1);
b[a][pos]]=0;
return pos;
}
int change(int pos)
{ int j;
while (pos>=0&&(j=selectnum(a[pos]+1))==0)
b[a[pos--]]=1;
if (pos<0) return –1
b[a[pos]]=1;
a[pos]=j;
b[j]=0;
return pos;
}
void find()
{ int ok=0,pos=0;
a[pos]=1;
b[a[pos]]=0;
do {
if (ok)
if (pos==8)
{ write(a);
pos=change(pos);
}
else pos=extend(pos);
else pos=change(pos);
ok=check(pos);
} while (pos>=0)
}
void main()
{ int i;
for (i=1;i<=N;i++)
b[i]=1;
find();
}
【問題】 n皇后問題
問題描述:求出在一個n×n的棋盤上,放置n個不能互相捕捉的國際象棋“皇后”的所有布局。
這是來源于國際象棋的一個問題;屎罂梢匝刂v橫和兩條斜線4個方向相互捕捉。如圖所示,一個皇后放在棋盤的第4行第3列位置上,則棋盤上凡打“×”的位置上的皇后就能與這個皇后相互捕捉。
1 2 3 4 5 6 7 8
× ×
× × ×
× × ×
× × Q × × × × ×
× × ×
× × ×
× ×
× ×
從圖中可以得到以下啟示:一個合適的解應是在每列、每行上只有一個皇后,且一條斜線上也只有一個皇后。
求解過程從空配置開始。在第1列至第m列為合理配置的基礎上,再配置第m+1列,直至第n列配置也是合理時,就找到了一個解。接著改變第n列配置,希望獲得下一個解。另外,在任一列上,可能有n種配置。開始時配置在第1行,以后改變時,順次選擇第2行、第3行、…、直到第n行。當?shù)趎行配置也找不到一個合理的配置時,就要回溯,去改變前一列的配置。得到求解皇后問題的算法如下:
{ 輸入棋盤大小值n;
m=0;
good=1;
do {
if (good)
if (m==n)
{ 輸出解;
改變之,形成下一個候選解;
}
else 擴展當前候選接至下一列;
else 改變之,形成下一個候選解;
good=檢查當前候選解的合理性;
} while (m!=0);
}
在編寫程序之前,先確定邊式棋盤的數(shù)據(jù)結構。比較直觀的方法是采用一個二維數(shù)組,但仔細觀察就會發(fā)現(xiàn),這種表示方法給調(diào)整候選解及檢查其合理性帶來困難。更好的方法乃是盡可能直接表示那些常用的信息。對于本題來說,“常用信息”并不是皇后的具體位置,而是“一個皇后是否已經(jīng)在某行和某條斜線合理地安置好了”。因在某一列上恰好放一個皇后,引入一個一維數(shù)組(col[ ]),值col[i]表示在棋盤第i列、col[i]行有一個皇后。例如:col[3]=4,就表示在棋盤的第3列、第4行上有一個皇后。另外,為了使程序在找完了全部解后回溯到最初位置,設定col[0]的初值為0當回溯到第0列時,說明程序已求得全部解,結束程序運行。
為使程序在檢查皇后配置的合理性方面簡易方便,引入以下三個工作數(shù)組:
。1) 數(shù)組a[ ],a[k]表示第k行上還沒有皇后;
。2) 數(shù)組b[ ],b[k]表示第k列右高左低斜線上沒有皇后;
。3) 數(shù)組 c[ ],c[k]表示第k列左高右低斜線上沒有皇后;
棋盤中同一右高左低斜線上的方格,他們的行號與列號之和相同;同一左高右低斜線上的方格,他們的行號與列號之差均相同。
初始時,所有行和斜線上均沒有皇后,從第1列的第1行配置第一個皇后開始,在第m列col[m]行放置了一個合理的皇后后,準備考察第m+1列時,在數(shù)組a[ ]、b[ ]和c[ ]中為第m列,col[m]行的位置設定有皇后標志;當從第m列回溯到第m-1列,并準備調(diào)整第m-1列的皇后配置時,清除在數(shù)組a[ ]、b[ ]和c[ ]中設置的關于第m-1列,col[m-1]行有皇后的標志。一個皇后在m列,col[m]行方格內(nèi)配置是合理的,由數(shù)組a[ ]、b[ ]和c[ ]對應位置的值都為1來確定。細節(jié)見以下程序:
【程序】
# include
# include
# define MAXN 20
int n,m,good;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
void main()
{ int j;
char awn;
printf(“Enter n: “); scanf(“%d”,&n);
for (j=0;j<=n;j++) a[j]=1;
for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
m=1; col[1]=1; good=1; col[0]=0;
do {
if (good)
if (m==n)
{ printf(“列\(zhòng)t行”);
for (j=1;j<=n;j++)
printf(“%3d\t%d\n”,j,col[j]);
printf(“Enter a character (Q/q for exit)!\n”);
scanf(“%c”,&awn);
if (awn==’Q’||awn==’q’) exit(0);
while (col[m]==n)
{ m--;
a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
}
col[m]++;
}
else
{ a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0;
col[++m]=1;
}
else
{ while (col[m]==n)
{ m--;
a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
}
col[m]++;
}
good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]];
} while (m!=0);
}
試探法找解算法也常常被編寫成遞歸函數(shù),下面兩程序中的函數(shù)queen_all()和函數(shù)queen_one()能分別用來解皇后問題的全部解和一個解。
【程序】
# include
# include
# define MAXN 20
int n;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
void main()
{ int j;
printf(“Enter n: “); scanf(“%d”,&n);
for (j=0;j<=n;j++) a[j]=1;
for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
queen_all(1,n);
}
void queen_all(int k,int n)
{ int i,j;
char awn;
for (i=1;i<=n;i++)
if (a[i]&&b[k+i]&&c[n+k-i])
{ col[k]=i;
a[i]=b[k+i]=c[n+k-i]=0;
if (k==n)
{ printf(“列\(zhòng)t行”);
for (j=1;j<=n;j++)
printf(“%3d\t%d\n”,j,col[j]);
printf(“Enter a character (Q/q for exit)!\n”);
scanf(“%c”,&awn);
if (awn==’Q’||awn==’q’) exit(0);
}
queen_all(k+1,n);
a[i]=b[k+i]=c[n+k-i];
}
}
采用遞歸方法找一個解與找全部解稍有不同,在找一個解的算法中,遞歸算法要對當前候選解最終是否能成為解要有回答。當它成為最終解時,遞歸函數(shù)就不再遞歸試探,立即返回;若不能成為解,就得繼續(xù)試探。設函數(shù)queen_one()返回1表示找到解,返回0表示當前候選解不能成為解。細節(jié)見以下函數(shù)。
【程序】
# define MAXN 20
int n;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
int queen_one(int k,int n)
{ int i,found;
i=found=0;
While (!found&&i { i++;
if (a[i]&&b[k+i]&&c[n+k-i])
{ col[k]=i;
a[i]=b[k+i]=c[n+k-i]=0;
if (k==n) return 1;
else
found=queen_one(k+1,n);
a[i]=b[k+i]=c[n+k-i]=1;
}
}
return found;
}
六、貪婪法
貪婪法是一種不追求最優(yōu)解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優(yōu)解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優(yōu)選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數(shù)最少,不考慮找零錢的所有各種發(fā)表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優(yōu),是因為銀行對其發(fā)行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優(yōu)的解應是3個5單位面值的硬幣。
【問題】 裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對于0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數(shù)目可能不同。裝箱問題要求使裝盡這n種物品的箱子數(shù)要少。
若考察將n種物品的集合分劃成n個或小于n個物品的所有子集,最優(yōu)解就可以找到。但所有可能劃分的總數(shù)太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題采用非常簡單的近似算法,即貪婪法。該算法依次將物品放到它第一個能放進去的箱子中,該算法雖不能保證找到最優(yōu)解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然后按排序結果對物品重新編號即可。裝箱算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數(shù)n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數(shù)器box_count為0;
for (i=0;i { 從已用的第一只箱子開始順序?qū)ふ夷芊湃胛锲穒 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,并將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述算法能求出需要的箱子數(shù)box_count,并能求出各箱子所裝物品。下面的例子說明該算法不一定能找到最優(yōu)解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述算法計算,需三只箱子,各箱子所裝物品分別為:第一只箱子裝物品1、3;第二只箱子裝物品2、4、5;第三只箱子裝物品6。而最優(yōu)解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每只箱子所裝物品用鏈表來表示,鏈表首結點指針存于一個結構中,結構記錄尚剩余的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上算法編寫的程序。
【程序】
# include
# include
typedef struct ele
{ int vno;
struct ele *link;
} ELE;
typedef struct hnode
{ int remainder;
ELE *head;
Struct hnode *next;
} HNODE;
void main()
{ int n, i, box_count, box_volume, *a;
HNODE *box_h, *box_t, *j;
ELE *p, *q;
Printf(“輸入箱子容積\n”);
Scanf(“%d”,&box_volume);
Printf(“輸入物品種數(shù)\n”);
Scanf(“%d”,&n);
A=(int *)malloc(sizeof(int)*n);
Printf(“請按體積從大到小順序輸入各物品的體積:”);
For (i=0;i Box_h=box_t=NULL;
Box_count=0;
For (i=0;i { p=(ELE *)malloc(sizeof(ELE));
p->vno=i;
for (j=box_h;j!=NULL;j=j->next)
if (j->remainder>=a[i]) break;
if (j==NULL)
{ j=(HNODE *)malloc(sizeof(HNODE));
j->remainder=box_volume-a[i];
j->head=NULL;
if (box_h==NULL) box_h=box_t=j;
else box_t=boix_t->next=j;
j->next=NULL;
box_count++;
}
else j->remainder-=a[i];
for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);
if (q==NULL)
{ p->link=j->head;
j->head=p;
}
else
{ p->link=NULL;
q->link=p;
}
}
printf(“共使用了%d只箱子”,box_count);
printf(“各箱子裝物品情況如下:”);
for (j=box_h,i=1;j!=NULL;j=j->next,i++)
{ printf(“第%2d只箱子,還剩余容積%4d,所裝物品有;\n”,I,j->remainder);
for (p=j->head;p!=NULL;p=p->link)
printf(“%4d”,p->vno+1);
printf(“\n”);
}
}
【問題】 馬的遍歷
問題描述:在8×8方格的棋盤上,從任意指定的方格出發(fā),為馬尋找一條走遍棋盤每一格并且只經(jīng)過一次的一條路徑。
馬在某個方格,可以在一步內(nèi)到達的不同位置最多有8個,如圖所示。如用二維數(shù)組board[ ][ ]表示棋盤,其元素記錄馬經(jīng)過該位置時的步驟號。另對馬的8種可能走法(稱為著法)設定一個順序,如當前位置在棋盤的(i,j)方格,下一個可能的位置依次為(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),實際可以走的位置盡限于還未走過的和不越出邊界的那些位置。為便于程序的同意處理,可以引入兩個數(shù)組,分別存儲各種可能走法對當前位置的縱橫增量。
4 3
5 2
馬
6 1
7 0
對于本題,一般可以采用回溯法,這里采用Warnsdoff策略求解,這也是一種貪婪法,其選擇下一出口的貪婪標準是在那些允許走的位置中,選擇出口最少的那個位置。如馬的當前位置(i,j)只有三個出口,他們是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分別走到這些位置,這三個位置又分別會有不同的出口,假定這三個位置的出口個數(shù)分別為4、2、3,則程序就選擇讓馬走向(i-2,j+1)位置。
由于程序采用的是一種貪婪法,整個找解過程是一直向前,沒有回溯,所以能非常快地找到解。但是,對于某些開始位置,實際上有解,而該算法不能找到解。對于找不到解的情況,程序只要改變8種可能出口的選擇順序,就能找到解。改變出口選擇順序,就是改變有相同出口時的選擇標準。以下程序考慮到這種情況,引入變量start,用于控制8種可能著法的選擇順序。開始時為0,當不能找到解時,就讓start增1,重新找解。細節(jié)以下程序。
【程序】
# include
int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};
int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};
int board[8][8];
int exitn(int i,int j,int s,int a[ ])
{ int i1,j1,k,count;
for (count=k=0;k<8;k++)
{ i1=i+delta_i[(s+k)%8];
j1=i+delta_j[(s+k)%8];
if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)
a[count++]=(s+k)%8;
}
return count;
}
int next(int i,int j,int s)
{ int m,k,mm,min,a[8],b[8],temp;
m=exitn(i,j,s,a);
if (m==0) return –1;
for (min=9,k=0;k { temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b);
if (temp { min=temp;
kk=a[k];
}
}
return kk;
}
void main()
{ int sx,sy,i,j,step,no,start;
for (sx=0;sx<8;sx++)
for (sy=0;sy<8;sy++)
{ start=0;
do {
for (i=0;i<8;i++)
for (j=0;j<8;j++)
board[i][j]=0;
board[sx][sy]=1;
I=sx; j=sy;
For (step=2;step<64;step++)
{ if ((no=next(i,j,start))==-1) break;
I+=delta_i[no];
j+=delta_j[no];
board[i][j]=step;
}
if (step>64) break;
start++;
} while(step<=64)
for (i=0;i<8;i++)
{ for (j=0;j<8;j++)
printf(“%4d”,board[i][j]);
printf(“\n\n”);
}
scanf(“%*c”);
}
}
七、分治法
1、分治法的基本思想
任何一個可以用計算機求解的問題所需的計算時間都與其規(guī)模N有關。問題的規(guī)模越小,越容易直接求解,解題所需的計算時間也越少。例如,對于n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那么容易處理了。要想直接解決一個規(guī)模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規(guī)模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題
2、分治法的適用條件
分治法所能解決的問題一般具有以下幾個特征:
(1)該問題的規(guī)?s小到一定的程度就可以容易地解決;
。2)該問題可以分解為若干個規(guī)模較小的相同問題,即該問題具有最優(yōu)子結構性質(zhì);
。3)利用該問題分解出的子問題的解可以合并為該問題的解;
。4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特征是絕大多數(shù)問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規(guī)模的增加而增加;第二條特征是應用分治法的前提,它也是大多數(shù)問題可以滿足的,此特征反映了遞歸思想的應用;第三條特征是關鍵,能否利用分治法完全取決于問題是否具有第三條特征,如果具備了第一條和第二條特征,而不具備第三條特征,則可以考慮貪心法或動態(tài)規(guī)劃法。第四條特征涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態(tài)規(guī)劃法較好。
3、分治法的基本步驟
分治法在每一層遞歸上都有三個步驟:
。1)分解:將原問題分解為若干個規(guī)模較小,相互獨立,與原問題形式相同的子問題;
。2)解決:若子問題規(guī)模較小而容易被解決則直接解,否則遞歸地解各個子問題;
。3)合并:將各個子問題的解合并為原問題的解。
它的一般的算法設計模式如下:
Divide_and_Conquer(P)
if |P|≤n0
then return(ADHOC(P))
將P分解為較小的子問題P1、P2、…、Pk
for i←1 to k
do
yi ← Divide-and-Conquer(Pi) △ 遞歸解決Pi
T ← MERGE(y1,y2,…,yk) △ 合并子問題
Return(T)
其中 |P| 表示問題P的規(guī)模;n0為一閾值,表示當問題P的規(guī)模不超過n0時,問題已容易直接解出,不必再繼續(xù)分解。ADHOC(P)是該分治法中的基本子算法,用于直接解小規(guī)模的問題P。因此,當P的規(guī)模不超過n0時,直接用算法ADHOC(P)求解。
算法MERGE(y1,y2,…,yk)是該分治法中的合并子算法,用于將P的子問題P1、P2、…、Pk的相應的解y1、y2、…、yk合并為P的解。
根據(jù)分治法的分割原則,原問題應該分為多少個子問題才較適宜?各個子問題的規(guī)模應該怎樣才為適當?這些問題很難予以肯定的回答。但人們從大量實踐中發(fā)現(xiàn),在用分治法設計算法時,最好使子問題的規(guī)模大致相同。換句話說,將一個問題分成大小相等的k個子問題的處理方法是行之有效的。許多問題可以取k=2。這種使子問題規(guī)模大致相等的做法是出自一種平衡子問題的思想,它幾乎總是比子問題規(guī)模不等的做法要好。
北京 | 天津 | 上海 | 江蘇 | 山東 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |