首頁 考試吧論壇 Exam8視線 考試商城 網(wǎng)絡(luò)課程 模擬考試 考友錄 實用文檔 求職招聘 論文下載
2011中考 | 2011高考 | 2012考研 | 考研培訓(xùn) | 在職研 | 自學(xué)考試 | 成人高考 | 法律碩士 | MBA考試
MPA考試 | 中科院
四六級 | 職稱英語 | 商務(wù)英語 | 公共英語 | 托福 | 雅思 | 專四專八 | 口譯筆譯 | 博思 | GRE GMAT
新概念英語 | 成人英語三級 | 申碩英語 | 攻碩英語 | 職稱日語 | 日語學(xué)習(xí) | 法語 | 德語 | 韓語
計算機(jī)等級考試 | 軟件水平考試 | 職稱計算機(jī) | 微軟認(rèn)證 | 思科認(rèn)證 | Oracle認(rèn)證 | Linux認(rèn)證
華為認(rèn)證 | Java認(rèn)證
公務(wù)員 | 報關(guān)員 | 銀行從業(yè)資格 | 證券從業(yè)資格 | 期貨從業(yè)資格 | 司法考試 | 法律顧問 | 導(dǎo)游資格
報檢員 | 教師資格 | 社會工作者 | 外銷員 | 國際商務(wù)師 | 跟單員 | 單證員 | 物流師 | 價格鑒證師
人力資源 | 管理咨詢師考試 | 秘書資格 | 心理咨詢師考試 | 出版專業(yè)資格 | 廣告師職業(yè)水平
駕駛員 | 網(wǎng)絡(luò)編輯
衛(wèi)生資格 | 執(zhí)業(yè)醫(yī)師 | 執(zhí)業(yè)藥師 | 執(zhí)業(yè)護(hù)士
會計從業(yè)資格考試會計證) | 經(jīng)濟(jì)師 | 會計職稱 | 注冊會計師 | 審計師 | 注冊稅務(wù)師
注冊資產(chǎn)評估師 | 高級會計師 | ACCA | 統(tǒng)計師 | 精算師 | 理財規(guī)劃師 | 國際內(nèi)審師
一級建造師 | 二級建造師 | 造價工程師 | 造價員 | 咨詢工程師 | 監(jiān)理工程師 | 安全工程師
質(zhì)量工程師 | 物業(yè)管理師 | 招標(biāo)師 | 結(jié)構(gòu)工程師 | 建筑師 | 房地產(chǎn)估價師 | 土地估價師 | 巖土師
設(shè)備監(jiān)理師 | 房地產(chǎn)經(jīng)紀(jì)人 | 投資項目管理師 | 土地登記代理人 | 環(huán)境影響評價師 | 環(huán)保工程師
城市規(guī)劃師 | 公路監(jiān)理師 | 公路造價師 | 安全評價師 | 電氣工程師 | 注冊測繪師 | 注冊計量師
繽紛校園 | 實用文檔 | 英語學(xué)習(xí) | 作文大全 | 求職招聘 | 論文下載 | 訪談 | 游戲
您現(xiàn)在的位置: 考試吧(Exam8.com) > 軟件水平考試 > 復(fù)習(xí)資料 > 其它資料 > 正文

軟件水平考試常用算法設(shè)計方法

    要使計算機(jī)能完成人們預(yù)定的工作,首先必須為如何完成預(yù)定的工作設(shè)計一個算法,然后再根據(jù)算法編寫程序。計算機(jī)程序要對問題的每個對象和處理規(guī)則給出正確詳盡的描述,其中程序的數(shù)據(jù)結(jié)構(gòu)和變量用來描述問題的對象,程序結(jié)構(gòu)、函數(shù)和語句用來描述問題的算法。算法數(shù)據(jù)結(jié)構(gòu)是程序的兩個重要方面。

  算法是問題求解過程的精確描述,一個算法由有限條可完全機(jī)械地執(zhí)行的、有確定結(jié)果的指令組成。指令正確地描述了要完成的任務(wù)和它們被執(zhí)行的順序。計算機(jī)按算法指令所描述的順序執(zhí)行算法的指令能在有限的步驟內(nèi)終止,或終止于給出問題的解,或終止于指出問題對此輸入數(shù)據(jù)無解。

  通常求解一個問題可能會有多種算法可供選擇,選擇的主要標(biāo)準(zhǔn)是算法的正確性和可靠性,簡單性和易理解性。其次是算法所需要的存儲空間少和執(zhí)行更快等。

  算法設(shè)計是一件非常困難的工作,經(jīng)常采用的算法設(shè)計技術(shù)主要有迭代法、窮舉搜索法、遞推法、貪婪法、回溯法、分治法、動態(tài)規(guī)劃法等等。另外,為了更簡潔的形式設(shè)計和藐視算法,在算法設(shè)計時又常常采用遞歸技術(shù),用遞歸描述算法。
  
    一、迭代法

  迭代法是用于求方程或方程組近似根的一種常用的算法設(shè)計方法。設(shè)方程為f(x)=0,用某種數(shù)學(xué)方法導(dǎo)出等價的形式x=g(x),然后按以下步驟執(zhí)行:
 。1) 選一個方程的近似根,賦給變量x0;
  (2) 將x0的值保存于變量x1,然后計算g(x1),并將結(jié)果存于變量x0;
 。3) 當(dāng)x0與x1的差的絕對值還小于指定的精度要求時,重復(fù)步驟(2)的計算。
  若方程有根,并且用上述方法計算出來的近似根序列收斂,則按上述方法求得的x0就認(rèn)為是方程的根。上述算法用C程序的形式表示為:
  【算法】迭代法求方程的根
  { x0=初始近似根;
   do {
   x1=x0;
   x0=g(x1); /*按特定的方程計算新的近似根*/
   } while ( fabs(x0-x1)>Epsilon);
   printf(“方程的近似根是%f\n”,x0);
  }
  迭代算法也常用于求方程組的根,令
   X=(x0,x1,…,xn-1)
  設(shè)方程組為:
   xi=gi(X) (I=0,1,…,n-1)
  則求方程組根的迭代算法可描述如下:
  【算法】迭代法求方程組的根
   { for (i=0;i   x[i]=初始近似根;
   do {
   for (i=0;i   y[i]=x[i];
   for (i=0;i   x[i]=gi(X);
   for (delta=0.0,i=0;i   if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]);
   } while (delta>Epsilon);
   for (i=0;i   printf(“變量x[%d]的近似根是 %f”,I,x[i]);
   printf(“\n”);
   }
   具體使用迭代法求根時應(yīng)注意以下兩種可能發(fā)生的情況:
 。1) 如果方程無解,算法求出的近似根序列就不會收斂,迭代過程會變成死循環(huán),因此在使用迭代算法前應(yīng)先考察方程是否有解,并在程序中對迭代的次數(shù)給予限制;
  (2) 方程雖然有解,但迭代公式選擇不當(dāng),或迭代的初始近似根選擇不合理,也會導(dǎo)致迭代失敗。

  二、窮舉搜索法

   窮舉搜索法是對可能是解的眾多候選解按某種順序進(jìn)行逐一枚舉和檢驗,并從眾找出那些符合要求的候選解作為問題的解。
  【問題】 將A、B、C、D、E、F這六個變量排成如圖所示的三角形,這六個變量分別取[1,6]上的整數(shù),且均不相同。求使三角形三條邊上的變量之和相等的全部解。如圖就是一個解。
  程序引入變量a、b、c、d、e、f,并讓它們分別順序取1至6的證書,在它們互不相同的條件下,測試由它們排成的如圖所示的三角形三條邊上的變量之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當(dāng)這些變量取盡所有的組合后,程序就可得到全部可能的解。細(xì)節(jié)見下面的程序。
  【程序1】
  # include
  void main()
  { int a,b,c,d,e,f;
   for (a=1;a<=6;a++)
   for (b=1;b<=6;b++) {
   if (b==a) continue;
   for (c=1;c<=6;c++) {
   if (c==a)||(c==b) continue;
   for (d=1;d<=6;d++) {
   if (d==a)||(d==b)||(d==c) continue;
  for (e=1;e<=6;e++) {
   if (e==a)||(e==b)||(e==c)||(e==d) continue;
  f=21-(a+b+c+d+e);
  if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) {
  printf(“%6d,a);
   printf(“%4d%4d”,b,f);
   printf(“%2d%4d%4d”,c,d,e);
   scanf(“%*c”);
  }
   }
   }
   }
   }
   }
  按窮舉法編寫的程序通常不能適應(yīng)變化的情況。如問題改成有9個變量排成三角形,每條邊有4個變量的情況,程序的循環(huán)重數(shù)就要相應(yīng)改變。
   對一組數(shù)窮盡所有排列,還有更直接的方法。將一個排列看作一個長整數(shù),則所有排列對應(yīng)著一組整數(shù)。將這組整數(shù)按從小到大的順序排列排成一個整數(shù),從對應(yīng)最小的整數(shù)開始。按數(shù)列的遞增順序逐一列舉每個排列對應(yīng)的每個整數(shù),這能更有效地完成排列的窮舉。從一個排列找出對應(yīng)數(shù)列的下一個排列可在當(dāng)前排列的基礎(chǔ)上作部分調(diào)整來實現(xiàn)。倘若當(dāng)前排列為1,2,4,6,5,3,并令其對應(yīng)的長整數(shù)為124653。要尋找比長整數(shù)124653更大的排列,可從該排列的最后一個數(shù)字順序向前逐位考察,當(dāng)發(fā)現(xiàn)排列中的某個數(shù)字比它前一個數(shù)字大時,如本例中的6比它的前一位數(shù)字4大,這說明還有對應(yīng)更大整數(shù)的排列。但為了順序從小到大列舉出所有的排列,不能立即調(diào)整得太大,如本例中將數(shù)字6與數(shù)字4交換得到的排列126453就不是排列124653的下一個排列。為了得到排列124653的下一個排列,應(yīng)從已經(jīng)考察過的那部分?jǐn)?shù)字中選出比數(shù)字大,但又是它們中最小的那一個數(shù)字,比如數(shù)字5,與數(shù)字4交換。該數(shù)字也是從后向前考察過程中第一個比4大的數(shù)字。5與4交換后,得到排列125643。在前面數(shù)字1,2,5固定的情況下,還應(yīng)選擇對應(yīng)最小整數(shù)的那個排列,為此還需將后面那部分?jǐn)?shù)字的排列順序顛倒,如將數(shù)字6,4,3的排列順序顛倒,得到排列1,2,5,3,4,6,這才是排列1,2,4,6,5,3的下一個排列。按以上想法編寫的程序如下。
  【程序2】
  # include
  # define SIDE_N 3
  # define LENGTH 3
  # define VARIABLES 6
  int A,B,C,D,E,F;
  int *pt[]={&A,&B,&C,&D,&E,&F};
  int *side[SIDE_N][LENGTH]={&A,&B,&C,&C,&D,&E,&E,&F,&A};
  int side_total[SIDE_N];
  main{}
  { int i,j,t,equal;
   for (j=0;j   *pt[j]=j+1;
   while(1)
   { for (i=0;i   { for (t=j=0;j   t+=*side[i][j];
   side_total[i]=t;
   }
   for (equal=1,i=0;equal&&i   if (side_total[i]!=side_total[i+1] equal=0;
   if (equal)
   { for (i=1;i   printf(“%4d”,*pt[i]);
   printf(“\n”);
   scanf(“%*c”);
   }
   for (j=VARIABLES-1;j>0;j--)
   if (*pt[j]>*pt[j-1]) break;
   if (j==0) break;
   for (i=VARIABLES-1;i>=j;i--)
   if (*pt[i]>*pt[i-1]) break;
   t=*pt[j-1];* pt[j-1] =* pt[i]; *pt[i]=t;
   for (i=VARIABLES-1;i>j;i--,j++)
   { t=*pt[j]; *pt[j] =* pt[i]; *pt[i]=t; }
   }
  }
  從上述問題解決的方法中,最重要的因素就是確定某種方法來確定所有的候選解。下面再用一個示例來加以說明。
  【問題】 背包問題
  問題描述:有不同價值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過指定的限制重量,但選中物品的價值之和最大。
  設(shè)n個物品的重量和價值分別存儲于數(shù)組w[ ]和v[ ]中,限制重量為tw?紤]一個n元組(x0,x1,…,xn-1),其中xi=0 表示第i個物品沒有選取,而xi=1則表示第i個物品被選取。顯然這個n元組等價于一個選擇方案。用枚舉法解決背包問題,需要枚舉所有的選取方案,而根據(jù)上述方法,我們只要枚舉所有的n元組,就可以得到問題的解。
  顯然,每個分量取值為0或1的n元組的個數(shù)共為2n個。而每個n元組其實對應(yīng)了一個長度為n的二進(jìn)制數(shù),且這些二進(jìn)制數(shù)的取值范圍為0~2n-1。因此,如果把0~2n-1分別轉(zhuǎn)化為相應(yīng)的二進(jìn)制數(shù),則可以得到我們所需要的2n個n元組。
  【算法】
  maxv=0;
  for (i=0;i<2n;i++)
  { B[0..n-1]=0;
   把i轉(zhuǎn)化為二進(jìn)制數(shù),存儲于數(shù)組B中;
   temp_w=0;
   temp_v=0;
   for (j=0;j   { if (B[j]==1)
   { temp_w=temp_w+w[j];
   temp_v=temp_v+v[j];
   }
   if ((temp_w<=tw)&&(temp_v>maxv))
   { maxv=temp_v;
   保存該B數(shù)組;
   }
   }
  }
  
  三、遞推法

   遞推法是利用問題本身所具有的一種遞推關(guān)系求問題解的一種方法。設(shè)要求問題規(guī)模為N的解,當(dāng)N=1時,解或為已知,或能非常方便地得到解。能采用遞推法構(gòu)造算法的問題有重要的遞推性質(zhì),即當(dāng)?shù)玫絾栴}規(guī)模為i-1的解后,由問題的遞推性質(zhì),能從已求得的規(guī)模為1,2,…,i-1的一系列解,構(gòu)造出問題規(guī)模為I的解。這樣,程序可從i=0或i=1出發(fā),重復(fù)地,由已知至i-1規(guī)模的解,通過遞推,獲得規(guī)模為i的解,直至得到規(guī)模為N的解。
  【問題】 階乘計算
  問題描述:編寫程序,對給定的n(n≦100),計算并輸出k的階乘k。╧=1,2,…,n)的全部有效數(shù)字。
  由于要求的整數(shù)可能大大超出一般整數(shù)的位數(shù),程序用一維數(shù)組存儲長整數(shù),存儲長整數(shù)數(shù)組的每個元素只存儲長整數(shù)的一位數(shù)字。如有m位成整數(shù)N用數(shù)組a[ ]存儲:
   N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
  并用a[0]存儲長整數(shù)N的位數(shù)m,即a[0]=m。按上述約定,數(shù)組的每個元素存儲k的階乘k!的一位數(shù)字,并從低位到高位依次存于數(shù)組的第二個元素、第三個元素……。例如,5!=120,在數(shù)組中的存儲形式為:
  3 0 2 1 ……
  首元素3表示長整數(shù)是一個3位數(shù),接著是低位到高位依次是0、2、1,表示成整數(shù)120。
   計算階乘k!可采用對已求得的階乘(k-1)!連續(xù)累加k-1次后求得。例如,已知4!=24,計算5!,可對原來的24累加4次24后得到120。細(xì)節(jié)見以下程序。
  # include
  # include
  # define MAXN 1000
  void pnext(int a[ ],int k)
  { int *b,m=a[0],i,j,r,carry;
   b=(int * ) malloc(sizeof(int)* (m+1));
   for ( i=1;i<=m;i++) b[i]=a[i];
   for ( j=1;j<=k;j++)
   { for ( carry=0,i=1;i<=m;i++)
   { r=(i   a[i]=r%10;
   carry=r/10;
   }
   if (carry) a[++m]=carry;
   }
   free(b);
   a[0]=m;
  }
  
  void write(int *a,int k)
  { int i;
   printf(“%4d!=”,k);
   for (i=a[0];i>0;i--)
   printf(“%d”,a[i]);
  printf(“\n\n”);
  }
  
  void main()
  { int a[MAXN],n,k;
   printf(“Enter the number n: “);
   scanf(“%d”,&n);
   a[0]=1;
   a[1]=1;
   write(a,1);
   for (k=2;k<=n;k++)
   { pnext(a,k);
   write(a,k);
   getchar();
   }
  }

  四、遞歸

   遞歸是設(shè)計和描述算法的一種有力的工具,由于它在復(fù)雜算法的描述中被經(jīng)常采用,為此在進(jìn)一步介紹其他算法設(shè)計方法之前先討論它。
   能采用遞歸描述的算法通常有這樣的特征:為求解規(guī)模為N的問題,設(shè)法將它分解成規(guī)模較小的問題,然后從這些小問題的解方便地構(gòu)造出大問題的解,并且這些規(guī)模較小的問題也能采用同樣的分解和綜合方法,分解成規(guī)模更小的問題,并從這些更小問題的解構(gòu)造出規(guī)模較大問題的解。特別地,當(dāng)規(guī)模N=1時,能直接得解。
  【問題】 編寫計算斐波那契(Fibonacci)數(shù)列的第n項函數(shù)fib(n)。
   斐波那契數(shù)列為:0、1、1、2、3、……,即:
   fib(0)=0;
   fib(1)=1;
   fib(n)=fib(n-1)+fib(n-2) (當(dāng)n>1時)。
  寫成遞歸函數(shù)有:
  int fib(int n)
  { if (n==0) return 0;
   if (n==1) return 1;
   if (n>1) return fib(n-1)+fib(n-2);
  }
   遞歸算法的執(zhí)行過程分遞推和回歸兩個階段。在遞推階段,把較復(fù)雜的問題(規(guī)模為n)的求解推到比原問題簡單一些的問題(規(guī)模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結(jié)果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數(shù)fib中,當(dāng)n為1和0的情況。
   在回歸階段,當(dāng)獲得最簡單情況的解后,逐級返回,依次得到稍復(fù)雜問題的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的結(jié)果,……,在得到了fib(n-1)和fib(n-2)的結(jié)果后,返回得到fib(n)的結(jié)果。
   在編寫遞歸函數(shù)時要注意,函數(shù)中的局部變量和參數(shù)知識局限于當(dāng)前調(diào)用層,當(dāng)遞推進(jìn)入“簡單問題”層時,原來層次上的參數(shù)和局部變量便被隱蔽起來。在一系列“簡單問題”層,它們各有自己的參數(shù)和局部變量。
   由于遞歸引起一系列的函數(shù)調(diào)用,并且可能會有一系列的重復(fù)計算,遞歸算法的執(zhí)行效率相對較低。當(dāng)某個遞歸算法能較方便地轉(zhuǎn)換成遞推算法時,通常按遞推算法編寫程序。例如上例計算斐波那契數(shù)列的第n項的函數(shù)fib(n)應(yīng)采用遞推算法,即從斐波那契數(shù)列的前兩項出發(fā),逐次由前兩項計算出下一項,直至計算出要求的第n項。
  【問題】 組合問題
  問題描述:找出從自然數(shù)1、2、……、n中任取r個數(shù)的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
   (4)5、3、2 (5)5、3、1 (6)5、2、1
   (7)4、3、2 (8)4、3、1 (9)4、2、1
   (10)3、2、1
   分析所列的10個組合,可以采用這樣的遞歸思想來考慮求組合函數(shù)的算法。設(shè)函數(shù)為void comb(int m,int k)為找出從自然數(shù)1、2、……、m中任取k個數(shù)的所有組合。當(dāng)組合的第一個數(shù)字選定時,其后的數(shù)字是從余下的m-1個數(shù)中取k-1數(shù)的組合。這就將求m個數(shù)中取k個數(shù)的組合問題轉(zhuǎn)化成求m-1個數(shù)中取k-1個數(shù)的組合問題。設(shè)函數(shù)引入工作數(shù)組a[ ]存放求出的組合的數(shù)字,約定函數(shù)將確定的k個數(shù)字組合的第一個數(shù)字放在a[k]中,當(dāng)一個組合求出后,才將a[ ]中的一個組合輸出。第一個數(shù)可以是m、m-1、……、k,函數(shù)將確定組合的第一個數(shù)字放入數(shù)組后,有兩種可能的選擇,因還未去頂組合的其余元素,繼續(xù)遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細(xì)節(jié)見以下程序中的函數(shù)comb。
  【程序】
  # include
  # define MAXN 100
  int a[MAXN];
  void comb(int m,int k)
  { int i,j;
   for (i=m;i>=k;i--)
   { a[k]=i;
   if (k>1)
   comb(i-1,k-1);
   else
   { for (j=a[0];j>0;j--)
   printf(“%4d”,a[j]);
   printf(“\n”);
   }
   }
  }
  
  void main()
  { a[0]=3;
   comb(5,3);
  }
  【問題】 背包問題
  問題描述:有不同價值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過指定的限制重量,但選中物品的價值之和最大。
  設(shè)n件物品的重量分別為w0、w1、…、wn-1,物品的價值分別為v0、v1、…、vn-1。采用遞歸尋找物品的選擇方案。設(shè)前面已有了多種選擇的方案,并保留了其中總價值最大的方案于數(shù)組option[ ],該方案的總價值存于變量maxv。當(dāng)前正在考察新方案,其物品選擇情況保存于數(shù)組cop[ ]。假定當(dāng)前方案已考慮了前i-1件物品,現(xiàn)在要考慮第i件物品;當(dāng)前方案已包含的物品的重量之和為tw;至此,若其余物品都選擇是可能的話,本方案能達(dá)到的總價值的期望值為tv。算法引入tv是當(dāng)一旦當(dāng)前方案的總價值的期望值也小于前面方案的總價值maxv時,繼續(xù)考察當(dāng)前方案變成無意義的工作,應(yīng)終止當(dāng)前方案,立即去考察下一個方案。因為當(dāng)方案的總價值不比maxv大時,該方案不會被再考察,這同時保證函數(shù)后找到的方案一定會比前面的方案更好。
  對于第i件物品的選擇考慮有兩種可能:
 。1) 考慮物品i被選擇,這種可能性僅當(dāng)包含它不會超過方案總重量限制時才是可行的。選中后,繼續(xù)遞歸去考慮其余物品的選擇。
  (2) 考慮物品i不被選擇,這種可能性僅當(dāng)不包含物品i也有可能會找到價值更大的方案的情況。
  按以上思想寫出遞歸算法如下:
  try(物品i,當(dāng)前選擇已達(dá)到的重量和,本方案可能達(dá)到的總價值tv)
  { /*考慮物品i包含在當(dāng)前方案中的可能性*/
   if(包含物品i是可以接受的)
   { 將物品i包含在當(dāng)前方案中;
   if (i   try(i+1,tw+物品i的重量,tv);
   else
   /*又一個完整方案,因為它比前面的方案好,以它作為最佳方案*/
  以當(dāng)前方案作為臨時最佳方案保存;
   恢復(fù)物品i不包含狀態(tài);
   }
   /*考慮物品i不包含在當(dāng)前方案中的可能性*/
   if (不包含物品i僅是可男考慮的)
   if (i   try(i+1,tw,tv-物品i的價值);
   else
   /*又一個完整方案,因它比前面的方案好,以它作為最佳方案*/
  以當(dāng)前方案作為臨時最佳方案保存;
   }
   為了理解上述算法,特舉以下實例。設(shè)有4件物品,它們的重量和價值見表:
  物品 0 1 2 3
  重量 5 3 2 1
  價值 4 4 3 1
  
  并設(shè)限制重量為7。則按以上算法,下圖表示找解過程。由圖知,一旦找到一個解,算法就進(jìn)一步找更好的佳。如能判定某個查找分支不會找到更好的解,算法不會在該分支繼續(xù)查找,而是立即終止該分支,并去考察下一個分支。
  
  按上述算法編寫函數(shù)和程序如下:
  【程序】
  # include
  # define N 100
  double limitW,totV,maxV;
  int option[N],cop[N];
  struct { double weight;
   double value;
   }a[N];
  int n;
  void find(int i,double tw,double tv)
  { int k;
   /*考慮物品i包含在當(dāng)前方案中的可能性*/
   if (tw+a[i].weight<=limitW)
   { cop[i]=1;
   if (i   else
   { for (k=0;k   option[k]=cop[k];
   maxv=tv;
   }
   cop[i]=0;
  }
   /*考慮物品i不包含在當(dāng)前方案中的可能性*/
   if (tv-a[i].value>maxV)
   if (i   else
   { for (k=0;k   option[k]=cop[k];
   maxv=tv-a[i].value;
   }
  }
  
  void main()
  { int k;
   double w,v;
   printf(“輸入物品種數(shù)\n”);
   scanf((“%d”,&n);
   printf(“輸入各物品的重量和價值\n”);
   for (totv=0.0,k=0;k   { scanf(“%1f%1f”,&w,&v);
   a[k].weight=w;
   a[k].value=v;
   totV+=V;
   }
   printf(“輸入限制重量\n”);
   scanf(“%1f”,&limitV);
   maxv=0.0;
   for (k=0;k   find(0,0.0,totV);
   for (k=0;k   if (option[k]) printf(“%4d”,k+1);
   printf(“\n總價值為%.2f\n”,maxv);
  }
   作為對比,下面以同樣的解題思想,考慮非遞歸的程序解。為了提高找解速度,程序不是簡單地逐一生成所有候選解,而是從每個物品對候選解的影響來形成值得進(jìn)一步考慮的候選解,一個候選解是通過依次考察每個物品形成的。對物品i的考察有這樣幾種情況:當(dāng)該物品被包含在候選解中依舊滿足解的總重量的限制,該物品被包含在候選解中是應(yīng)該繼續(xù)考慮的;反之,該物品不應(yīng)該包括在當(dāng)前正在形成的候選解中。同樣地,僅當(dāng)物品不被包括在候選解中,還是有可能找到比目前臨時最佳解更好的候選解時,才去考慮該物品不被包括在候選解中;反之,該物品不包括在當(dāng)前候選解中的方案也不應(yīng)繼續(xù)考慮。對于任一值得繼續(xù)考慮的方案,程序就去進(jìn)一步考慮下一個物品。
  【程序】
  # include
  # define N 100
  double limitW;
  int cop[N];
  struct ele { double weight;
   double value;
   } a[N];
  int k,n;
  struct { int flg;
   double tw;
   double tv;
   }twv[N];
  void next(int i,double tw,double tv)
  { twv[i].flg=1;
   twv[i].tw=tw;
   twv[i].tv=tv;
  }
  double find(struct ele *a,int n)
  { int i,k,f;
   double maxv,tw,tv,totv;
   maxv=0;
   for (totv=0.0,k=0;k   totv+=a[k].value;
   next(0,0.0,totv);
   i=0;
   While (i>=0)
   { f=twv[i].flg;
   tw=twv[i].tw;
   tv=twv[i].tv;
   switch(f)
   { case 1: twv[i].flg++;
   if (tw+a[i].weight<=limitW)
   if (i   { next(i+1,tw+a[i].weight,tv);
   i++;
   }
   else
   { maxv=tv;
   for (k=0;k   cop[k]=twv[k].flg!=0;
   }
   break;
   case 0: i--;
   break;
   default: twv[i].flg=0;
   if (tv-a[i].value>maxv)
   if (i   { next(i+1,tw,tv-a[i].value);
   i++;
   }
   else
   { maxv=tv-a[i].value;
   for (k=0;k   cop[k]=twv[k].flg!=0;
   }
   break;
   }
   }
   return maxv;
  }
  
  void main()
  { double maxv;
   printf(“輸入物品種數(shù)\n”);
   scanf((“%d”,&n);
   printf(“輸入限制重量\n”);
   scanf(“%1f”,&limitW);
  printf(“輸入各物品的重量和價值\n”);
   for (k=0;k   scanf(“%1f%1f”,&a[k].weight,&a[k].value);
   maxv=find(a,n);
   printf(“\n選中的物品為\n”);
  for (k=0;k   if (option[k]) printf(“%4d”,k+1);
   printf(“\n總價值為%.2f\n”,maxv);
  }

  五、回溯法

   回溯法也稱為試探法,該方法首先暫時放棄關(guān)于問題規(guī)模大小的限制,并將問題的候選解按某種順序逐一枚舉和檢驗。當(dāng)發(fā)現(xiàn)當(dāng)前候選解不可能是解時,就選擇下一個候選解;倘若當(dāng)前候選解除了還不滿足問題規(guī)模要求外,滿足所有其他要求時,繼續(xù)擴(kuò)大當(dāng)前候選解的規(guī)模,并繼續(xù)試探。如果當(dāng)前候選解滿足包括問題規(guī)模在內(nèi)的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當(dāng)前候選解,尋找下一個候選解的過程稱為回溯。擴(kuò)大當(dāng)前候選解的規(guī)模,以繼續(xù)試探的過程稱為向前試探。

  1、回溯法的一般描述

  可用回溯法求解的問題P,通常要能表達(dá)為:對于已知的由n元組(x1,x2,…,xn)組成的一個狀態(tài)空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關(guān)于n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。

  解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當(dāng)大的。

  我們發(fā)現(xiàn),對于許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(jj。因此,對于約束集D具有完備性的問題P,一旦檢測斷定某個j元組(x1,x2,…,xj)違反D中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題P的解,因而就不必去搜索它們、檢測它們。回溯法正是針對這類問題,利用這類問題的上述性質(zhì)而提出來的比枚舉法效率更高的算法。

  回溯法首先將問題P的n元組的狀態(tài)空間E表示成一棵高為n的帶權(quán)有序樹T,把在E中求問題P的所有解轉(zhuǎn)化為在T中搜索問題P的所有解。樹T類似于檢索樹,它可以這樣構(gòu)造:

  設(shè)Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。從根開始,讓T的第I層的每一個結(jié)點都有mi個兒子。這mi個兒子到它們的雙親的邊,按從左到右的次序,分別帶權(quán)xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照這種構(gòu)造方式,E中的一個n元組(x1,x2,…,xn)對應(yīng)于T中的一個葉子結(jié)點,T的根到這個葉子結(jié)點的路徑上依次的n條邊的權(quán)分別為x1,x2,…,xn,反之亦然。另外,對于任意的0≤i≤n-1,E中n元組(x1,x2,…,xn)的一個前綴I元組(x1,x2,…,xi)對應(yīng)于T中的一個非葉子結(jié)點,T的根到這個非葉子結(jié)點的路徑上依次的I條邊的權(quán)分別為x1,x2,…,xi,反之亦然。特別,E中的任意一個n元組的空前綴(),對應(yīng)于T的根。

   因而,在E中尋找問題P的一個解等價于在T中搜索一個葉子結(jié)點,要求從T的根到該葉子結(jié)點的路徑上依次的n條邊相應(yīng)帶的n個權(quán)x1,x2,…,xn滿足約束集D的全部約束。在T中搜索所要求的葉子結(jié)點,很自然的一種方式是從根出發(fā),按深度優(yōu)先的策略逐步深入,即依次搜索滿足約束條件的前綴1元組(x1i)、前綴2元組(x1,x2)、…,前綴I元組(x1,x2,…,xi),…,直到i=n為止。

   在回溯法中,上述引入的樹被稱為問題P的狀態(tài)空間樹;樹T上任意一個結(jié)點被稱為問題P的狀態(tài)結(jié)點;樹T上的任意一個葉子結(jié)點被稱為問題P的一個解狀態(tài)結(jié)點;樹T上滿足約束集D的全部約束的任意一個葉子結(jié)點被稱為問題P的一個回答狀態(tài)結(jié)點,它對應(yīng)于問題P的一個解。

  【問題】 組合問題
  問題描述:找出從自然數(shù)1、2、……、n中任取r個數(shù)的所有組合。
  例如n=5,r=3的所有組合為:
 。1)1、2、3 (2)1、2、4 (3)1、2、5
   (4)1、3、4 (5)1、3、5 (6)1、4、5
   (7)2、3、4 (8)2、3、5 (9)2、4、5
   (10)3、4、5
  則該問題的狀態(tài)空間為:
  E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}
  約束集為: x1   顯然該約束集具有完備性。
  問題的狀態(tài)空間樹T:
 
  2、回溯法的方法

   對于具有完備約束集D的一般問題P及其相應(yīng)的狀態(tài)空間樹T,利用T的層次結(jié)構(gòu)和D的完備性,在T中搜索問題P的所有解的回溯法可以形象地描述為:

   從T的根出發(fā),按深度優(yōu)先的策略,系統(tǒng)地搜索以其為根的子樹中可能包含著回答結(jié)點的所有狀態(tài)結(jié)點,而跳過對肯定不含回答結(jié)點的所有子樹的搜索,以提高搜索效率。具體地說,當(dāng)搜索按深度優(yōu)先策略到達(dá)一個滿足D中所有有關(guān)約束的狀態(tài)結(jié)點時,即“激活”該狀態(tài)結(jié)點,以便繼續(xù)往深層搜索;否則跳過對以該狀態(tài)結(jié)點為根的子樹的搜索,而一邊逐層地向該狀態(tài)結(jié)點的祖先結(jié)點回溯,一邊“殺死”其兒子結(jié)點已被搜索遍的祖先結(jié)點,直到遇到其兒子結(jié)點未被搜索遍的祖先結(jié)點,即轉(zhuǎn)向其未被搜索的一個兒子結(jié)點繼續(xù)搜索。

  在搜索過程中,只要所激活的狀態(tài)結(jié)點又滿足終結(jié)條件,那么它就是回答結(jié)點,應(yīng)該把它輸出或保存。由于在回溯法求解問題時,一般要求出問題的所有解,因此在得到回答結(jié)點后,同時也要進(jìn)行回溯,以便得到問題的其他解,直至回溯到T的根且根的所有兒子結(jié)點均已被搜索過為止。

   例如在組合問題中,從T的根出發(fā)深度優(yōu)先遍歷該樹。當(dāng)遍歷到結(jié)點(1,2)時,雖然它滿足約束條件,但還不是回答結(jié)點,則應(yīng)繼續(xù)深度遍歷;當(dāng)遍歷到葉子結(jié)點(1,2,5)時,由于它已是一個回答結(jié)點,則保存(或輸出)該結(jié)點,并回溯到其雙親結(jié)點,繼續(xù)深度遍歷;當(dāng)遍歷到結(jié)點(1,5)時,由于它已是葉子結(jié)點,但不滿足約束條件,故也需回溯。

  3、回溯法的一般流程和技術(shù)

   在用回溯法求解有關(guān)問題的過程中,一般是一邊建樹,一邊遍歷該樹。在回溯法中我們一般采用非遞歸方法。下面,我們給出回溯法的非遞歸算法的一般流程:
  
  在用回溯法求解問題,也即在遍歷狀態(tài)空間樹的過程中,如果采用非遞歸方法,則我們一般要用到棧的數(shù)據(jù)結(jié)構(gòu)。這時,不僅可以用棧來表示正在遍歷的樹的結(jié)點,而且可以很方便地表示建立孩子結(jié)點和回溯過程。
  例如在組合問題中,我們用一個一維數(shù)組Stack[ ]表示棧。開始?眨瑒t表示了樹的根結(jié)點。如果元素1進(jìn)棧,則表示建立并遍歷(1)結(jié)點;這時如果元素2進(jìn)棧,則表示建立并遍歷(1,2)結(jié)點;元素3再進(jìn)棧,則表示建立并遍歷(1,2,3)結(jié)點。這時可以判斷它滿足所有約束條件,是問題的一個解,輸出(或保存)。這時只要棧頂元素(3)出棧,即表示從結(jié)點(1,2,3)回溯到結(jié)點(1,2)。

  【問題】 組合問題
  問題描述:找出從自然數(shù)1,2,…,n中任取r個數(shù)的所有組合。
  采用回溯法找問題的解,將找到的組合以從小到大順序存于a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質(zhì):
 。1) a[i+1]>a[i],后一個數(shù)字比前一個大;
  (2) a[i]-i<=n-r+1。
  按回溯法的思想,找解過程可以敘述如下:

   首先放棄組合數(shù)個數(shù)為r的條件,候選組合從只有一個數(shù)字1開始。因該候選解滿足除問題規(guī)模之外的全部條件,擴(kuò)大其規(guī)模,并使其滿足上述條件(1),候選組合改為1,2。繼續(xù)這一過程,得到候選組合1,2,3。該候選解滿足包括問題規(guī)模在內(nèi)的全部條件,因而是一個解。在該解的基礎(chǔ)上,選下一個候選解,因a[2]上的3調(diào)整為4,以及以后調(diào)整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由于對5不能再作調(diào)整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調(diào)整為3,并向前試探,得到解1,3,4。重復(fù)上述向前試探和向后回溯,直至要從a[0]再回溯時,說明已經(jīng)找完問題的全部解。按上述思想寫成程序如下:
  【程序】
  # define MAXN 100
  int a[MAXN];
  void comb(int m,int r)
  { int i,j;
   i=0;
   a[i]=1;
   do {
   if (a[i]-i<=m-r+1
   { if (i==r-1)
   { for (j=0;j   printf(“%4d”,a[j]);
   printf(“\n”);
   }
   a[i]++;
   continue;
   }
   else
   { if (i==0)
   return;
   a[--i]++;
   }
   } while (1)
  }
  
  main()
  { comb(5,3);
  }
  【問題】 填字游戲
  問題描述:在3×3個方格的方陣中要填入數(shù)字1到N(N≥10)內(nèi)的某9個數(shù)字,每個方格填一個整數(shù),似的所有相鄰兩個方格內(nèi)的兩個整數(shù)之和為質(zhì)數(shù)。試求出所有滿足這個要求的各種數(shù)字填法。

  可用試探發(fā)找到問題的解,即從第一個方格開始,為當(dāng)前方格尋找一個合理的整數(shù)填入,并在當(dāng)前位置正確填入后,為下一方格尋找可填入的合理整數(shù)。如不能為當(dāng)前方格找到一個合理的可填證書,就要回退到前一方格,調(diào)整前一方格的填入數(shù)。當(dāng)?shù)诰艂方格也填入合理的整數(shù)后,就找到了一個解,將該解輸出,并調(diào)整第九個的填入的整數(shù),尋找下一個解。

  為找到一個滿足要求的9個數(shù)的填法,從還未填一個數(shù)開始,按某種順序(如從小到大的順序)每次在當(dāng)前位置填入一個整數(shù),然后檢查當(dāng)前填入的整數(shù)是否能滿足要求。在滿足要求的情況下,繼續(xù)用同樣的方法為下一方格填入整數(shù)。如果最近填入的整數(shù)不能滿足要求,就改變填入的整數(shù)。如對當(dāng)前方格試盡所有可能的整數(shù),都不能滿足要求,就得回退到前一方格,并調(diào)整前一方格填入的整數(shù)。如此重復(fù)執(zhí)行擴(kuò)展、檢查或調(diào)整、檢查,直到找到一個滿足問題要求的解,將解輸出。
  回溯法找一個解的算法:
  { int m=0,ok=1;
   int n=8;
   do{
   if (ok) 擴(kuò)展;
   else 調(diào)整;
   ok=檢查前m個整數(shù)填放的合理性;
   } while ((!ok||m!=n)&&(m!=0))
   if (m!=0) 輸出解;
   else 輸出無解報告;
  }
  如果程序要找全部解,則在將找到的解輸出后,應(yīng)繼續(xù)調(diào)整最后位置上填放的整數(shù),試圖去找下一個解。相應(yīng)的算法如下:
  回溯法找全部解的算法:
  { int m=0,ok=1;
   int n=8;
   do{
   if (ok)
  { if (m==n)
  { 輸出解;
  調(diào)整;
  }
  else 擴(kuò)展;
   }
   else 調(diào)整;
   ok=檢查前m個整數(shù)填放的合理性;
   } while (m!=0);
  }
  為了確保程序能夠終止,調(diào)整時必須保證曾被放棄過的填數(shù)序列不會再次實驗,即要求按某種有許模型生成填數(shù)序列。給解的候選者設(shè)定一個被檢驗的順序,按這個順序逐一形成候選者并檢驗。從小到大或從大到小,都是可以采用的方法。如擴(kuò)展時,先在新位置填入整數(shù)1,調(diào)整時,找當(dāng)前候選解中下一個還未被使用過的整數(shù)。將上述擴(kuò)展、調(diào)整、檢驗都編寫成程序,細(xì)節(jié)見以下找全部解的程序。
  【程序】
  # include
  # define N 12
  void write(int a[ ])
  { int i,j;
   for (i=0;i<3;i++)
   { for (j=0;j<3;j++)
   printf(“%3d”,a[3*i+j]);
   printf(“\n”);
   }
   scanf(“%*c”);
  }
  
  int b[N+1];
  int a[10];
  int isprime(int m)
  { int i;
   int primes[ ]={2,3,5,7,11,17,19,23,29,-1};
   if (m==1||m%2=0) return 0;
   for (i=0;primes[i]>0;i++)
   if (m==primes[i]) return 1;
   for (i=3;i*i<=m;)
   { if (m%i==0) return 0;
   i+=2;
   }
   return 1;
  }
  
  int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1},
   {2,4,-1},{3,-1},{4,6,-1},{5,7,-1}};
  int selectnum(int start)
  { int j;
   for (j=start;j<=N;j++)
   if (b[j]) return j
   return 0;
  }
  
  int check(int pos)
  { int i,j;
   if (pos<0) return 0;
   for (i=0;(j=checkmatrix[pos][i])>=0;i++)
   if (!isprime(a[pos]+a[j])
   return 0;
   return 1;
  }
  
  int extend(int pos)
  { a[++pos]=selectnum(1);
   b[a][pos]]=0;
   return pos;
  }
  
  int change(int pos)
  { int j;
   while (pos>=0&&(j=selectnum(a[pos]+1))==0)
   b[a[pos--]]=1;
   if (pos<0) return –1
   b[a[pos]]=1;
   a[pos]=j;
   b[j]=0;
   return pos;
  }
  
  void find()
  { int ok=0,pos=0;
   a[pos]=1;
   b[a[pos]]=0;
   do {
   if (ok)
   if (pos==8)
   { write(a);
   pos=change(pos);
   }
   else pos=extend(pos);
   else pos=change(pos);
   ok=check(pos);
   } while (pos>=0)
  }
  
  void main()
  { int i;
   for (i=1;i<=N;i++)
   b[i]=1;
   find();
  }
  【問題】 n皇后問題
  問題描述:求出在一個n×n的棋盤上,放置n個不能互相捕捉的國際象棋“皇后”的所有布局。
   這是來源于國際象棋的一個問題。皇后可以沿著縱橫和兩條斜線4個方向相互捕捉。如圖所示,一個皇后放在棋盤的第4行第3列位置上,則棋盤上凡打“×”的位置上的皇后就能與這個皇后相互捕捉。
  
  1 2 3 4 5 6 7 8
   × ×
  × × ×
   × × ×
  × × Q × × × × ×
   × × ×
  × × ×
   × ×
   × ×
  從圖中可以得到以下啟示:一個合適的解應(yīng)是在每列、每行上只有一個皇后,且一條斜線上也只有一個皇后。
   求解過程從空配置開始。在第1列至第m列為合理配置的基礎(chǔ)上,再配置第m+1列,直至第n列配置也是合理時,就找到了一個解。接著改變第n列配置,希望獲得下一個解。另外,在任一列上,可能有n種配置。開始時配置在第1行,以后改變時,順次選擇第2行、第3行、…、直到第n行。當(dāng)?shù)趎行配置也找不到一個合理的配置時,就要回溯,去改變前一列的配置。得到求解皇后問題的算法如下:
   { 輸入棋盤大小值n;
   m=0;
   good=1;
   do {
   if (good)
   if (m==n)
   { 輸出解;
   改變之,形成下一個候選解;
   }
   else 擴(kuò)展當(dāng)前候選接至下一列;
   else 改變之,形成下一個候選解;
   good=檢查當(dāng)前候選解的合理性;
   } while (m!=0);
   }
   在編寫程序之前,先確定邊式棋盤的數(shù)據(jù)結(jié)構(gòu)。比較直觀的方法是采用一個二維數(shù)組,但仔細(xì)觀察就會發(fā)現(xiàn),這種表示方法給調(diào)整候選解及檢查其合理性帶來困難。更好的方法乃是盡可能直接表示那些常用的信息。對于本題來說,“常用信息”并不是皇后的具體位置,而是“一個皇后是否已經(jīng)在某行和某條斜線合理地安置好了”。因在某一列上恰好放一個皇后,引入一個一維數(shù)組(col[ ]),值col[i]表示在棋盤第i列、col[i]行有一個皇后。例如:col[3]=4,就表示在棋盤的第3列、第4行上有一個皇后。另外,為了使程序在找完了全部解后回溯到最初位置,設(shè)定col[0]的初值為0當(dāng)回溯到第0列時,說明程序已求得全部解,結(jié)束程序運行。

   為使程序在檢查皇后配置的合理性方面簡易方便,引入以下三個工作數(shù)組:
 。1) 數(shù)組a[ ],a[k]表示第k行上還沒有皇后;
 。2) 數(shù)組b[ ],b[k]表示第k列右高左低斜線上沒有皇后;
 。3) 數(shù)組 c[ ],c[k]表示第k列左高右低斜線上沒有皇后;

  棋盤中同一右高左低斜線上的方格,他們的行號與列號之和相同;同一左高右低斜線上的方格,他們的行號與列號之差均相同。

   初始時,所有行和斜線上均沒有皇后,從第1列的第1行配置第一個皇后開始,在第m列col[m]行放置了一個合理的皇后后,準(zhǔn)備考察第m+1列時,在數(shù)組a[ ]、b[ ]和c[ ]中為第m列,col[m]行的位置設(shè)定有皇后標(biāo)志;當(dāng)從第m列回溯到第m-1列,并準(zhǔn)備調(diào)整第m-1列的皇后配置時,清除在數(shù)組a[ ]、b[ ]和c[ ]中設(shè)置的關(guān)于第m-1列,col[m-1]行有皇后的標(biāo)志。一個皇后在m列,col[m]行方格內(nèi)配置是合理的,由數(shù)組a[ ]、b[ ]和c[ ]對應(yīng)位置的值都為1來確定。細(xì)節(jié)見以下程序:
  【程序】
  # include
  # include
  # define MAXN 20
  int n,m,good;
  int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
  
  void main()
  { int j;
   char awn;
   printf(“Enter n: “); scanf(“%d”,&n);
   for (j=0;j<=n;j++) a[j]=1;
   for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
   m=1; col[1]=1; good=1; col[0]=0;
   do {
   if (good)
   if (m==n)
   { printf(“列\(zhòng)t行”);
   for (j=1;j<=n;j++)
   printf(“%3d\t%d\n”,j,col[j]);
   printf(“Enter a character (Q/q for exit)!\n”);
   scanf(“%c”,&awn);
   if (awn==’Q’||awn==’q’) exit(0);
   while (col[m]==n)
   { m--;
   a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
   }
   col[m]++;
   }
   else
   { a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0;
   col[++m]=1;
   }
   else
   { while (col[m]==n)
   { m--;
   a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
   }
   col[m]++;
   }
   good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]];
   } while (m!=0);
  }
   試探法找解算法也常常被編寫成遞歸函數(shù),下面兩程序中的函數(shù)queen_all()和函數(shù)queen_one()能分別用來解皇后問題的全部解和一個解。
  【程序】
  # include
  # include
  # define MAXN 20
  int n;
  int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
  void main()
  { int j;
   printf(“Enter n: “); scanf(“%d”,&n);
   for (j=0;j<=n;j++) a[j]=1;
   for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
   queen_all(1,n);
  }
  
  void queen_all(int k,int n)
  { int i,j;
   char awn;
   for (i=1;i<=n;i++)
   if (a[i]&&b[k+i]&&c[n+k-i])
   { col[k]=i;
   a[i]=b[k+i]=c[n+k-i]=0;
   if (k==n)
   { printf(“列\(zhòng)t行”);
   for (j=1;j<=n;j++)
   printf(“%3d\t%d\n”,j,col[j]);
   printf(“Enter a character (Q/q for exit)!\n”);
   scanf(“%c”,&awn);
   if (awn==’Q’||awn==’q’) exit(0);
   }
   queen_all(k+1,n);
   a[i]=b[k+i]=c[n+k-i];
   }
  }
   采用遞歸方法找一個解與找全部解稍有不同,在找一個解的算法中,遞歸算法要對當(dāng)前候選解最終是否能成為解要有回答。當(dāng)它成為最終解時,遞歸函數(shù)就不再遞歸試探,立即返回;若不能成為解,就得繼續(xù)試探。設(shè)函數(shù)queen_one()返回1表示找到解,返回0表示當(dāng)前候選解不能成為解。細(xì)節(jié)見以下函數(shù)。
  【程序】
  # define MAXN 20
   int n;
   int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
   int queen_one(int k,int n)
   { int i,found;
   i=found=0;
   While (!found&&i   { i++;
   if (a[i]&&b[k+i]&&c[n+k-i])
   { col[k]=i;
   a[i]=b[k+i]=c[n+k-i]=0;
   if (k==n) return 1;
   else
   found=queen_one(k+1,n);
   a[i]=b[k+i]=c[n+k-i]=1;
   }
   }
   return found;
   }

  六、貪婪法

   貪婪法是一種不追求最優(yōu)解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優(yōu)解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當(dāng)前情況為基礎(chǔ)作最優(yōu)選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。

   例如平時購物找錢時,為使找回的零錢的硬幣數(shù)最少,不考慮找零錢的所有各種發(fā)表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當(dāng)不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優(yōu),是因為銀行對其發(fā)行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪算法,應(yīng)找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優(yōu)的解應(yīng)是3個5單位面值的硬幣。

  【問題】 裝箱問題

  問題描述:裝箱問題可簡述如下:設(shè)有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對于0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數(shù)目可能不同。裝箱問題要求使裝盡這n種物品的箱子數(shù)要少。
   若考察將n種物品的集合分劃成n個或小于n個物品的所有子集,最優(yōu)解就可以找到。但所有可能劃分的總數(shù)太大。對適當(dāng)大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題采用非常簡單的近似算法,即貪婪法。該算法依次將物品放到它第一個能放進(jìn)去的箱子中,該算法雖不能保證找到最優(yōu)解,但還是能找到非常好的解。不失一般性,設(shè)n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然后按排序結(jié)果對物品重新編號即可。裝箱算法簡單描述如下:
  { 輸入箱子的容積;
   輸入物品種數(shù)n;
   按體積從大到小順序,輸入各物品的體積;
   預(yù)置已用箱子鏈為空;
   預(yù)置已用箱子計數(shù)器box_count為0;
   for (i=0;i   { 從已用的第一只箱子開始順序?qū)ふ夷芊湃胛锲穒 的箱子j;
   if (已用箱子都不能再放物品i)
   { 另用一個箱子,并將物品i放入該箱子;
   box_count++;
   }
   else
   將物品i放入箱子j;
   }
  }
   上述算法能求出需要的箱子數(shù)box_count,并能求出各箱子所裝物品。下面的例子說明該算法不一定能找到最優(yōu)解,設(shè)有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述算法計算,需三只箱子,各箱子所裝物品分別為:第一只箱子裝物品1、3;第二只箱子裝物品2、4、5;第三只箱子裝物品6。而最優(yōu)解為兩只箱子,分別裝物品1、4、5和2、3、6。

   若每只箱子所裝物品用鏈表來表示,鏈表首結(jié)點指針存于一個結(jié)構(gòu)中,結(jié)構(gòu)記錄尚剩余的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構(gòu)成鏈表。以下是按以上算法編寫的程序。
  【程序】
  # include
  # include
  typedef struct ele
  { int vno;
   struct ele *link;
  } ELE;
  typedef struct hnode
  { int remainder;
   ELE *head;
   Struct hnode *next;
  } HNODE;
  
  void main()
  { int n, i, box_count, box_volume, *a;
   HNODE *box_h, *box_t, *j;
   ELE *p, *q;
   Printf(“輸入箱子容積\n”);
   Scanf(“%d”,&box_volume);
   Printf(“輸入物品種數(shù)\n”);
   Scanf(“%d”,&n);
   A=(int *)malloc(sizeof(int)*n);
   Printf(“請按體積從大到小順序輸入各物品的體積:”);
   For (i=0;i   Box_h=box_t=NULL;
   Box_count=0;
   For (i=0;i   { p=(ELE *)malloc(sizeof(ELE));
   p->vno=i;
   for (j=box_h;j!=NULL;j=j->next)
   if (j->remainder>=a[i]) break;
   if (j==NULL)
   { j=(HNODE *)malloc(sizeof(HNODE));
   j->remainder=box_volume-a[i];
   j->head=NULL;
   if (box_h==NULL) box_h=box_t=j;
   else box_t=boix_t->next=j;
   j->next=NULL;
   box_count++;
   }
   else j->remainder-=a[i];
   for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);
   if (q==NULL)
   { p->link=j->head;
   j->head=p;
   }
   else
   { p->link=NULL;
   q->link=p;
   }
   }
   printf(“共使用了%d只箱子”,box_count);
   printf(“各箱子裝物品情況如下:”);
   for (j=box_h,i=1;j!=NULL;j=j->next,i++)
   { printf(“第%2d只箱子,還剩余容積%4d,所裝物品有;\n”,I,j->remainder);
   for (p=j->head;p!=NULL;p=p->link)
   printf(“%4d”,p->vno+1);
   printf(“\n”);
   }
  }
  【問題】 馬的遍歷
  問題描述:在8×8方格的棋盤上,從任意指定的方格出發(fā),為馬尋找一條走遍棋盤每一格并且只經(jīng)過一次的一條路徑。

   馬在某個方格,可以在一步內(nèi)到達(dá)的不同位置最多有8個,如圖所示。如用二維數(shù)組board[ ][ ]表示棋盤,其元素記錄馬經(jīng)過該位置時的步驟號。另對馬的8種可能走法(稱為著法)設(shè)定一個順序,如當(dāng)前位置在棋盤的(i,j)方格,下一個可能的位置依次為(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),實際可以走的位置盡限于還未走過的和不越出邊界的那些位置。為便于程序的同意處理,可以引入兩個數(shù)組,分別存儲各種可能走法對當(dāng)前位置的縱橫增量。
   4 3
  5 2
   馬
  6 1
   7 0
  
   對于本題,一般可以采用回溯法,這里采用Warnsdoff策略求解,這也是一種貪婪法,其選擇下一出口的貪婪標(biāo)準(zhǔn)是在那些允許走的位置中,選擇出口最少的那個位置。如馬的當(dāng)前位置(i,j)只有三個出口,他們是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分別走到這些位置,這三個位置又分別會有不同的出口,假定這三個位置的出口個數(shù)分別為4、2、3,則程序就選擇讓馬走向(i-2,j+1)位置。

   由于程序采用的是一種貪婪法,整個找解過程是一直向前,沒有回溯,所以能非?斓卣业浇。但是,對于某些開始位置,實際上有解,而該算法不能找到解。對于找不到解的情況,程序只要改變8種可能出口的選擇順序,就能找到解。改變出口選擇順序,就是改變有相同出口時的選擇標(biāo)準(zhǔn)。以下程序考慮到這種情況,引入變量start,用于控制8種可能著法的選擇順序。開始時為0,當(dāng)不能找到解時,就讓start增1,重新找解。細(xì)節(jié)以下程序。
  【程序】
  # include
  int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};
  int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};
  int board[8][8];
  int exitn(int i,int j,int s,int a[ ])
  { int i1,j1,k,count;
   for (count=k=0;k<8;k++)
   { i1=i+delta_i[(s+k)%8];
   j1=i+delta_j[(s+k)%8];
   if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)
   a[count++]=(s+k)%8;
   }
   return count;
  }
  
  int next(int i,int j,int s)
  { int m,k,mm,min,a[8],b[8],temp;
   m=exitn(i,j,s,a);
   if (m==0) return –1;
   for (min=9,k=0;k   { temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b);
   if (temp   { min=temp;
  kk=a[k];
   }
   }
   return kk;
  }
  
  void main()
  { int sx,sy,i,j,step,no,start;
   for (sx=0;sx<8;sx++)
   for (sy=0;sy<8;sy++)
   { start=0;
   do {
   for (i=0;i<8;i++)
   for (j=0;j<8;j++)
   board[i][j]=0;
   board[sx][sy]=1;
   I=sx; j=sy;
   For (step=2;step<64;step++)
   { if ((no=next(i,j,start))==-1) break;
   I+=delta_i[no];
   j+=delta_j[no];
   board[i][j]=step;
   }
   if (step>64) break;
   start++;
   } while(step<=64)
   for (i=0;i<8;i++)
   { for (j=0;j<8;j++)
   printf(“%4d”,board[i][j]);
   printf(“\n\n”);
   }
   scanf(“%*c”);
   }
  }

  七、分治法

  1、分治法的基本思想

  任何一個可以用計算機(jī)求解的問題所需的計算時間都與其規(guī)模N有關(guān)。問題的規(guī)模越小,越容易直接求解,解題所需的計算時間也越少。例如,對于n個元素的排序問題,當(dāng)n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當(dāng)n較大時,問題就不那么容易處理了。要想直接解決一個規(guī)模較大的問題,有時是相當(dāng)困難的。

  分治法的設(shè)計思想是,將一個難以直接解決的大問題,分割成一些規(guī)模較小的相同問題,以便各個擊破,分而治之。

  如果原問題可分割成k個子問題

  2、分治法的適用條件

  分治法所能解決的問題一般具有以下幾個特征:
  (1)該問題的規(guī)?s小到一定的程度就可以容易地解決;
 。2)該問題可以分解為若干個規(guī)模較小的相同問題,即該問題具有最優(yōu)子結(jié)構(gòu)性質(zhì);
 。3)利用該問題分解出的子問題的解可以合并為該問題的解;
 。4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。

  上述的第一條特征是絕大多數(shù)問題都可以滿足的,因為問題的計算復(fù)雜性一般是隨著問題規(guī)模的增加而增加;第二條特征是應(yīng)用分治法的前提,它也是大多數(shù)問題可以滿足的,此特征反映了遞歸思想的應(yīng)用;第三條特征是關(guān)鍵,能否利用分治法完全取決于問題是否具有第三條特征,如果具備了第一條和第二條特征,而不具備第三條特征,則可以考慮貪心法或動態(tài)規(guī)劃法。第四條特征涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復(fù)地解公共的子問題,此時雖然可用分治法,但一般用動態(tài)規(guī)劃法較好。

  3、分治法的基本步驟

  分治法在每一層遞歸上都有三個步驟:
 。1)分解:將原問題分解為若干個規(guī)模較小,相互獨立,與原問題形式相同的子問題;
 。2)解決:若子問題規(guī)模較小而容易被解決則直接解,否則遞歸地解各個子問題;
 。3)合并:將各個子問題的解合并為原問題的解。
  它的一般的算法設(shè)計模式如下:
  Divide_and_Conquer(P)
  if |P|≤n0
  then return(ADHOC(P))
  將P分解為較小的子問題P1、P2、…、Pk
  for i←1 to k
  do
  yi ← Divide-and-Conquer(Pi) △ 遞歸解決Pi
  T ← MERGE(y1,y2,…,yk) △ 合并子問題
  Return(T)
  其中 |P| 表示問題P的規(guī)模;n0為一閾值,表示當(dāng)問題P的規(guī)模不超過n0時,問題已容易直接解出,不必再繼續(xù)分解。ADHOC(P)是該分治法中的基本子算法,用于直接解小規(guī)模的問題P。因此,當(dāng)P的規(guī)模不超過n0時,直接用算法ADHOC(P)求解。
  算法MERGE(y1,y2,…,yk)是該分治法中的合并子算法,用于將P的子問題P1、P2、…、Pk的相應(yīng)的解y1、y2、…、yk合并為P的解。
  根據(jù)分治法的分割原則,原問題應(yīng)該分為多少個子問題才較適宜?各個子問題的規(guī)模應(yīng)該怎樣才為適當(dāng)?這些問題很難予以肯定的回答。但人們從大量實踐中發(fā)現(xiàn),在用分治法設(shè)計算法時,最好使子問題的規(guī)模大致相同。換句話說,將一個問題分成大小相等的k個子問題的處理方法是行之有效的。許多問題可以取k=2。這種使子問題規(guī)模大致相等的做法是出自一種平衡子問題的思想,它幾乎總是比子問題規(guī)模不等的做法要好。

1 2 3 下一頁
文章搜索
軟件水平考試欄目導(dǎo)航
版權(quán)聲明:如果軟件水平考試網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉(zhuǎn)載本軟件水平考試網(wǎng)內(nèi)容,請注明出處。