>>>>關(guān)注“萬題庫成考”微信,獲取精華復(fù)習(xí)資料!
點擊查看:2017年成人高考《數(shù)學(xué)(文)》章節(jié)難點解析匯總
難點13 數(shù)列的通項與求和
數(shù)列是函數(shù)概念的繼續(xù)和延伸,數(shù)列的通項公式及前n項和公式都可以看作項數(shù)n的函數(shù),是函數(shù)思想在數(shù)列中的應(yīng)用.數(shù)列以通項為綱,數(shù)列的問題,最終歸結(jié)為對數(shù)列通項的研究,而數(shù)列的前n項和Sn可視為數(shù)列{Sn}的通項。通項及求和是數(shù)列中最基本也是最重要的問題之一,與數(shù)列極限及數(shù)學(xué)歸納法有著密切的聯(lián)系,是高考對數(shù)列問題考查中的熱點,本點的動態(tài)函數(shù)觀點解決有關(guān)問題,為其提供行之有效的方法.
●難點磁場
(★★★★★)設(shè){an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項等于Sn與2的等比中項.
(1)寫出數(shù)列{an}的前3項.
(2)求數(shù)列{an}的通項公式(寫出推證過程)
(3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).
●案例探究
[例1]已知數(shù)列{an}是公差為d的等差數(shù)列,數(shù)列{bn}是公比為q的(q∈R且q≠1)的等比數(shù)列,若函數(shù)f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{cn}的前n項和為Sn,對一切n∈N*,都有 =an+1成立,求 .
命題意圖:本題主要考查等差、等比數(shù)列的通項公式及前n項和公式、數(shù)列的極限,以及運算能力和綜合分析問題的能力.屬★★★★★級題目.
知識依托:本題利用函數(shù)思想把題設(shè)條件轉(zhuǎn)化為方程問題非常明顯,而(2)中條件等式的左邊可視為某數(shù)列前n項和,實質(zhì)上是該數(shù)列前n項和與數(shù)列{an}的關(guān)系,借助通項與前n項和的關(guān)系求解cn是該條件轉(zhuǎn)化的突破口.
錯解分析:本題兩問環(huán)環(huán)相扣,(1)問是基礎(chǔ),但解方程求基本量a1、b1、d、q,計算不準(zhǔn)易出錯;(2)問中對條件的正確認(rèn)識和轉(zhuǎn)化是關(guān)鍵.
技巧與方法:本題(1)問運用函數(shù)思想轉(zhuǎn)化為方程問題,思路較為自然,(2)問“借雞生蛋”構(gòu)造新數(shù)列{dn},運用和與通項的關(guān)系求出dn,絲絲入扣.
解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,
∴a3-a1=d2-(d-2)2=2d,
∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
∴ =q2,由q∈R,且q≠1,得q=-2,
∴bn=b·qn-1=4·(-2)n-1
(2)令 =dn,則d1+d2+…+dn=an+1,(n∈N*),
∴dn=an+1-an=2,
∴ =2,即cn=2·bn=8·(-2)n-1;∴Sn= [1-(-2)n].
∴ [例2]設(shè)An為數(shù)列{an}的前n項和,An= (an-1),數(shù)列{bn}的通項公式為bn=4n+3;
(1)求數(shù)列{an}的通項公式;
(2)把數(shù)列{an}與{bn}的公共項按從小到大的順序排成一個新的數(shù)列,證明:數(shù)列{dn}的通項公式為dn=32n+1;
(3)設(shè)數(shù)列{dn}的第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和;Dn為數(shù)列{dn}的前n項和,Tn=Br-Dn,求 .
命題意圖:本題考查數(shù)列的通項公式及前n項和公式及其相互關(guān)系;集合的相關(guān)概念,數(shù)列極限,以及邏輯推理能力.
知識依托:利用項與和的關(guān)系求an是本題的先決;(2)問中探尋{an}與{bn}的相通之處,須借助于二項式定理;而(3)問中利用求和公式求和則是最基本的知識點.
錯解分析:待證通項dn=32n+1與an的共同點易被忽視而寸步難行;注意不到r與n的關(guān)系,使Tn中既含有n,又含有r,會使所求的極限模糊不清.
技巧與方法:(1)問中項與和的關(guān)系為常規(guī)方法,(2)問中把3拆解為4-1,再利用二項式定理,尋找數(shù)列通項在形式上相通之處堪稱妙筆;(3)問中挖掘出n與r的關(guān)系,正確表示Br,問題便可迎刃而解.
解:(1)由An= (an-1),可知An+1= (an+1-1),
∴an+1-an= (an+1-an),即 =3,而a1=A1= (a1-1),得a1=3,所以數(shù)列是以3為首項,公比為3的等比數(shù)列,數(shù)列{an}的通項公式an=3n.
(2)∵32n+1=3·32n=3·(4-1)2n=3·[42n+C ·42n-1(-1)+…+C ·4·(-1)+(-1)2n]=4n+3,
∴32n+1∈{bn}.而數(shù)32n=(4-1)2n=42n+C ·42n-1·(-1)+…+C ·4·(-1)+(-1)2n=(4k+1),
∴32n {bn},而數(shù)列{an}={a2n+1}∪{a2n},∴dn=32n+1.
(3)由32n+1=4·r+3,可知r= ,
∴Br= ,
●錦囊妙計
1.數(shù)列中數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列中的項與數(shù)集中元素的異同.因此在研究數(shù)列問題時既要注意函數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性.
2.數(shù)列{an}前n 項和Sn與通項an的關(guān)系式:an= 3.求通項常用方法
、僮餍聰(shù)列法.作等差數(shù)列與等比數(shù)列.
、诶鄄畀B加法.最基本形式是:an=(an-an-1+(an-1+an-2)+…+(a2-a1)+a1.
③歸納、猜想法.
4.數(shù)列前n項和常用求法
、僦匾
1+2+…+n= n(n+1)
12+22+…+n2= n(n+1)(2n+1)
13+23+…+n3=(1+2+…+n)2= n2(n+1)2
、诘炔顢(shù)列中Sm+n=Sm+Sn+mnd,等比數(shù)列中Sm+n=Sn+qnSm=Sm+qmSn.
、哿秧椙蠛停簩(shù)列的通項分成兩個式子的代數(shù)和,即an=f(n+1)-f(n),然后累加時抵消中間的許多項.應(yīng)掌握以下常見的裂項:
、苠e項相消法
、莶㈨椙蠛头
數(shù)列通項與和的方法多種多樣,要視具體情形選用合適方法.
相關(guān)推薦:
2017年成人高考高起點化學(xué)復(fù)習(xí)資料匯總
美好明天 在線課程 |
科目 | 主講 老師 |
直播 試聽課 |
教材 精講班 教材精講班 15課時
(1)對教材中所有知識點進行系統(tǒng)講解 (2)根據(jù)近年考試規(guī)律對知識點進行重要程度標(biāo)注(必考/?/可考或1星/2星/3星等,不同科目略有差異) (3)核心知識點配備模擬題和歷年真題進行實戰(zhàn)練習(xí) |
重要考點 密訓(xùn)班 重要考點密訓(xùn)班 5課時
(1)總結(jié)、提煉重要、核心必考考點,剔除非重要考點 (2)配套密訓(xùn)試題,將考點變考分 |
VIP密訓(xùn) 密卷班 教學(xué)時長:3課時
(1)逐題精講3套核心試卷,列出涉及考點,學(xué)會利用知識點答題 預(yù)測考試重點方向,鞏固答題技巧 強化解題思維 構(gòu)建成套解題思維 (2)歷年真題題庫:逐題配備文字、視頻解析,了解最新命題趨勢,實戰(zhàn)訓(xùn)練鞏固知識點 |
考前5頁 A4紙 考前5頁A4紙密押:核心必考點精華集合,
5星重要,是老師們嘔心瀝血總結(jié)出來的, 全部背會,確定再次提分,你懂得! |
報名 |
---|---|---|---|---|---|---|---|---|
下載 | 下載 | 下載 | 下載 | |||||
課程安排 | 15課時/科 | 5課時/科 | 3套卷/科 | 5頁紙/科 | ||||
專升本 | 政治 | 大雄 | 報名 | |||||
英語(專升本) | Oriana | 報名 | ||||||
高等數(shù)學(xué)(一) | 開耕 | 報名 | ||||||
高等數(shù)學(xué)(二) | 開耕 | 報名 | ||||||
民法 | 肖瀟 | 報名 | ||||||
大學(xué)語文 | 小元 | 報名 | ||||||
教育理論 | 五月 | 報名 | ||||||
醫(yī)學(xué)綜合 | 夢茹,鴻儒 | 報名 | ||||||
藝術(shù)概論 | 猗猗 | 報名 | ||||||
高起點專本 | 語文 | 小元 | 報名 | |||||
英語(高起點) | Oriana | 報名 | ||||||
數(shù)學(xué)(理) | 開耕 | 報名 | ||||||
數(shù)學(xué)(文) | 開耕 | 報名 |
在線課程 |
AI私塾班
56%學(xué)員選擇 |
簽約保障班
38%學(xué)員選擇 |
基礎(chǔ)提升班
6%學(xué)員選擇 |
||
適合學(xué)員 | ①零基礎(chǔ)/多次考試未通過 ②需要全面系統(tǒng)學(xué)習(xí) ③自學(xué)能力不足/喜歡陪伴式學(xué)習(xí)(需要全程督學(xué)/希望名師領(lǐng)學(xué)的學(xué)員) ④希望一次順利錄取 |
①首次報考/往年裸考 ②備考時間緊張/答題無思路 ③需要快速提分和高效掌握考試重難點的學(xué)員 ④實務(wù)較弱,需要提升做題能力 |
①自學(xué)能力強 ②能根據(jù)老師講課內(nèi)容自主總結(jié)考試重點 |
---|
在線課程 |
AI私塾班
56%學(xué)員選擇 |
簽約保障班
38%學(xué)員選擇 |
基礎(chǔ)提升班
6%學(xué)員選擇 |
||
適合學(xué)員 | ①零基礎(chǔ)/多次考試未通過 ②需要全面系統(tǒng)學(xué)習(xí) ③自學(xué)能力不足/喜歡陪伴式學(xué)習(xí)(需要全程督學(xué)/希望名師領(lǐng)學(xué)的學(xué)員) ④希望一次順利錄取 |
①首次報考/往年裸考 ②備考時間緊張/答題無思路 ③需要快速提分和高效掌握考試重難點的學(xué)員 ④實務(wù)較弱,需要提升做題能力 |
①自學(xué)能力強 ②能根據(jù)老師講課內(nèi)容自主總結(jié)考試重點 |
||
---|---|---|---|---|---|
VIP三位一體課程體系 | 學(xué) | 教材精講班 | |||
重要考點密訓(xùn)班 | |||||
練 | VIP密訓(xùn)密卷班 | ||||
背 | 考前5頁A4紙 | ||||
VIP旗艦服務(wù) | 人工助學(xué)服務(wù) | 班主任微信1對1 | |||
授課老師微信1對1 | |||||
節(jié)點嚴(yán)控 | 考試倒計時提醒 | ||||
VIP直播日歷 | |||||
上課提醒 | |||||
便捷系統(tǒng) | 課程視頻、音頻、講義下載 | ||||
手機、平板、電腦多平臺聽課 | |||||
無限次離線回放 | |||||
VIP配套資料 | 電子資料 | 課程講義 | |||
3年真題集錦 | |||||
考前5頁紙 | |||||
VIP配套保障 | 1年有效期! 有效期結(jié)束,未達到錄取線申請退費或終身免費學(xué)! |
1年有效期! 有效期結(jié)束,考試不過科目免費重學(xué)1年! |
1年有效期! | ||
套餐價格 | 全科:¥3980 | 全科:¥2680 單科:¥980 |
全科:¥1680全科 單科:¥580 |