考研的復(fù)習(xí)是一個(gè)漫長(zhǎng)的過程,對(duì)于廣大考數(shù)學(xué)的考生來說,數(shù)學(xué)無疑是考研復(fù)習(xí)的重頭戲。其中對(duì)線性代數(shù)來說,相對(duì)于高數(shù)是比較簡(jiǎn)單的學(xué)科。但是往年考生的得分不是很理想。這主要是沒有掌握住線性代數(shù)的特點(diǎn):內(nèi)容抽象;概念多,性質(zhì)多;內(nèi)容縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透。所以跨考考研數(shù)學(xué)教研室李老師就考研數(shù)學(xué)線代復(fù)習(xí)建議考生做到“三點(diǎn)一線”。
一、抓基礎(chǔ)知識(shí)點(diǎn)
基本概念、基本方法、基本性質(zhì)一直是考研數(shù)學(xué)的重點(diǎn)。線性代數(shù)的概念比較抽象,但它有獨(dú)特的方法。要想有清晰地解題思路,基本概念就必須理清。不僅要知道它的內(nèi)涵,還要研究它的外延,全面理解才能準(zhǔn)確把握思路。有了清晰的解題思路,接下來就需要一個(gè)好的解題方法,對(duì)于線性代數(shù)來說,有很多基本的解題方法是很實(shí)用的,只要大家掌握了這些基本的解題思路,做起題來也是很輕松的。如何才能很好的掌握這些解題方法呢,不是死記硬背,而是理解掌握。抓住要點(diǎn),抓住例子,總結(jié)出典型,輕松掌握。
考生特別要根據(jù)歷年線性代數(shù)考試的兩個(gè)大題內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如:線性方程組的三種形式之間的聯(lián)系與轉(zhuǎn)換;行列式的計(jì)算與矩陣運(yùn)算之間的聯(lián)系與差別;實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn) 型之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對(duì)大家處理其他低分值試題也是有助益的。
二、抓考點(diǎn)
總體來說,線性代數(shù)主要包含行列式、矩陣、向量、線性方程組、矩陣的特征值與特征向量、二次型六章內(nèi)容。按照章節(jié),跨考考研數(shù)學(xué)教研室的老師總結(jié)出線性代數(shù)必須掌握的六大考點(diǎn)。
為了讓考生們?cè)诳荚囍坝兴睦頊?zhǔn)備,每年教育部考試中心命制的試題,都具有穩(wěn)定性,大體保持一致,局部慢慢變化。在往年的試卷中從來沒有出過偏題、怪題,也沒有出過超過大綱范圍的超綱題。但是,一份試卷如果沒有一點(diǎn)區(qū)分度,不能讓高水平的同學(xué)發(fā)揮自己的能力,這也不是一套好的試卷,所以在試題中必然會(huì)出現(xiàn)難、易試題恰當(dāng)?shù)拇钆洹T谠囶}知識(shí)面廣的前提下,不能超過總的試題量。如果誰還心存僥幸心理去猜題,最后是不會(huì)取得好成績(jī)的。只有自己付出了努力,認(rèn)真做好了復(fù)習(xí),抓住了考點(diǎn),才能得心應(yīng)手的應(yīng)對(duì)考試。
三、抓重點(diǎn)
在考研數(shù)學(xué)中,線代是最簡(jiǎn)單的了,只要掌握了基本知識(shí),多作些題,再細(xì)心一些,這部分拿高分很容易。線性代數(shù)中概念多、定理多、符號(hào)多、運(yùn)算規(guī)律多,內(nèi)容相互縱橫交錯(cuò),知識(shí)前后緊密聯(lián)系是線性代數(shù)課程的特點(diǎn),故考生應(yīng)通過全面系統(tǒng)的復(fù)習(xí),充分理解概念,掌握定理的條件、結(jié)論及應(yīng)用,熟悉符號(hào)的意義,掌握各種運(yùn)算規(guī)律、計(jì)算方法,并及時(shí)進(jìn)行總結(jié),抓聯(lián)系,抓規(guī)律,使零散的知識(shí)點(diǎn)串起來、連起來,使所學(xué)知識(shí)融會(huì)貫通。
另外,線性代數(shù)從內(nèi)容上看前后聯(lián)系緊密,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然開闊。例如:設(shè)A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量 都是齊次方程組Ax=0的解,再根據(jù)基礎(chǔ)解系的理論以及矩陣的秩與向量組秩的關(guān)系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,進(jìn)而可求矩陣 A或B中的一些參數(shù)。以上舉例,正是因?yàn)榫代各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性較大,同學(xué)們復(fù)習(xí)時(shí)要注重串聯(lián)、銜接與轉(zhuǎn)換,才能綜合提升。
四、綜合掌握一條主線
線性方程組是線性代數(shù)的主線,也是考試的重點(diǎn).在求解線性方程組時(shí)主要涉及兩種運(yùn)算:求行列式、矩陣的初等行(列)變換.要把握行列式與矩陣之 間的區(qū)別和聯(lián)系,在進(jìn)行運(yùn)算的過程中保證計(jì)算的準(zhǔn)確和速度。
由此,線性方程組解的情況,主要涵蓋了齊次線性方程組有非零解、非齊次線性方程組解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明以及帶參數(shù)的線性方程組的解的情況。為了使考生牢固掌握線性方程組的求解問題,跨考考研李老師對(duì)含參數(shù)的方程通解的求解思路進(jìn)行了整理,希望對(duì)考研同學(xué)有所幫助。通解的求法有兩種,若為齊次線性方程組,首先求解方程組的矩陣對(duì)應(yīng)的行列式的值,在特征值為零和不為零的情況下分別進(jìn)行討論,為零說明有解,帶入增廣矩陣化簡(jiǎn)整理;不為 零則有唯一解直接求出即可。若為非齊次方程組,則按照對(duì)增廣矩陣的討論進(jìn)行求解。
總之,跨考考研數(shù)學(xué)教研室李老師建議考生在復(fù)習(xí)線性代數(shù)的時(shí)候要注重基礎(chǔ),打好基本功,并結(jié)合一些綜合性的試題培養(yǎng)自己的分析解決問題能力,加深對(duì)知識(shí)的理解。