考研數(shù)學有四大重要定力證明需要大家熟練掌握,它們是微分中值定理的證明、求導公式的證明、積分中值定理和微積分基本定理的證明,下文我們來看的是求導公式的證明。
2015年真題考了一個證明題:證明兩個函數(shù)乘積的導數(shù)公式。幾乎每位同學都對這個公式怎么用比較熟悉,而對它怎么來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎階段講到。如果這個階段的考生帶著急功近利的心態(tài)只關注結論怎么用,而不關心結論怎么來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這里給2017考研學子提個醒:要重視基礎階段的復習,那些真題中未考過的重要結論的證明,有可能考到,不要放過。
當然,該公式的證明并不難。先考慮f(x)*g(x)在點x0處的導數(shù)。函數(shù)在一點的導數(shù)自然用導數(shù)定義考察,可以按照導數(shù)定義寫出一個極限式子。該極限為“0分之0”型,但不能用洛必達法則,因為分子的導數(shù)不好算(乘積的導數(shù)公式恰好是要證的,不能用!)。利用數(shù)學上常用的拼湊之法,加一項,減一項。這個“無中生有”的項要和前后都有聯(lián)系,便于提公因子。之后分子的四項兩兩配對,除以分母后考慮極限,不難得出結果。再由x0的任意性,便得到了f(x)*g(x)在任意點的導數(shù)公式。
類似可考慮f(x)+g(x),f(x)-g(x),f(x)/g(x)的導數(shù)公式的證明。
編輯推薦:
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |