首頁 - 網(wǎng)校 - 萬題庫 - 美好明天 - 直播 - 導(dǎo)航
熱點搜索
學(xué)員登錄 | 用戶名
密碼
新學(xué)員
老學(xué)員

2018年考研數(shù)學(xué)?甲C明題類別及解題方法

來源:考試吧 2017-4-1 14:32:22 要考試,上考試吧! 考研萬題庫
2018年考研數(shù)學(xué)?甲C明題類別及解題方法,更多2018考研報考指南、2018考研備考經(jīng)驗、考研歷年真題及答案等信息,請及時關(guān)注考試吧考研網(wǎng)或搜索公眾微信號“考試吧考研”!

  考研數(shù)學(xué)必考證明題,證明題都會怎么出?怎么證?下面整理了一些常出的證明題,同時分享一些好的方法,18考生注意學(xué)習(xí)和掌握。

  ☆題目篇☆

  考試難題一般出現(xiàn)在高等數(shù)學(xué),對高等數(shù)學(xué)一定要抓住重難點進(jìn)行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個高等數(shù)學(xué),容易出證明題的地方如下:

  數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

  微分中值定理的相關(guān)證明

  微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:

  1.零點定理和介質(zhì)定理;

  2.微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。

  3.微分中值定理

  積分中值定理的作用是為了去掉積分符號。

  在考查的時候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

  方程根的問題

  包括方程根唯一和方程根的個數(shù)的討論。

  不等式的證明

  定積分等式和不等式的證明

  主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

  積分與路徑無關(guān)的五個等價條件

  這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。

  ☆方法篇☆

  以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?

  結(jié)合幾何意義記住基本原理

  重要的定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。

  因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  借助幾何意義尋求證明思路

  一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。

  再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。

  逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。

  在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

  對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

長按二維碼關(guān)注即可獲得考研報名
獲取2018考研報名時間
獲取10頁精華點題講義
獲取2套仿真內(nèi)部資料
獲取歷年考試真題試卷

考研萬題庫手機(jī)題庫下載微信搜索"考試吧考研"

  編輯推薦:

  考試吧整理:2018年考研復(fù)習(xí)月歷表

  2018年考研報名時間預(yù)測微信提醒

  權(quán)威:2018年考研復(fù)習(xí)參考書推薦

  考試吧策劃:2018年考研報考指南專題

  考研萬題庫 考研包過必殺器!科學(xué)包過,懶人必備!

  2018年考研政治資料:2017年國內(nèi)外時事政治

文章搜索
萬題庫小程序
萬題庫小程序
·章節(jié)視頻 ·章節(jié)練習(xí)
·免費真題 ·?荚囶}
微信掃碼,立即獲取!
掃碼免費使用
考研英語一
共計364課時
講義已上傳
53214人在學(xué)
考研英語二
共計30課時
講義已上傳
5495人在學(xué)
考研數(shù)學(xué)一
共計71課時
講義已上傳
5100人在學(xué)
考研數(shù)學(xué)二
共計46課時
講義已上傳
3684人在學(xué)
考研數(shù)學(xué)三
共計41課時
講義已上傳
4483人在學(xué)
推薦使用萬題庫APP學(xué)習(xí)
掃一掃,下載萬題庫
手機(jī)學(xué)習(xí),復(fù)習(xí)效率提升50%!
版權(quán)聲明:如果考研網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉(zhuǎn)載本考研網(wǎng)內(nèi)容,請注明出處。
官方
微信
掃描關(guān)注考研微信
領(lǐng)《大數(shù)據(jù)寶典》
下載
APP
下載萬題庫
領(lǐng)精選6套卷
萬題庫
微信小程序
幫助
中心
文章責(zé)編:wuxiaojuan825