學歷中考高考考研專升本自考成考工程 一建二建一造二造一消二消安全會計經(jīng)濟師初級會計中級會計注會資格公務員教師人力社工
醫(yī)學藥師醫(yī)師護士初級護師主管護師衛(wèi)生資格臨床
臨床助理
中醫(yī)
中醫(yī)助理
口腔醫(yī)師
金融基金證券銀行期貨外語四六級計算機等考軟考
2020考研大綱及解析 ※ 大綱下載 ※ 關注微信
2020考研大綱將于2019年7月8日上午正式發(fā)布!小編發(fā)布2020考研大綱,教研老師也將第一時間為小伙伴帶來考研大綱解讀,希望各位考研的小伙伴及時關注,敬請期待!下面是2020、2019年考研數(shù)學二考試大綱(線性代數(shù)部分)考試內容和考試要求變化對比,以供參考!
章節(jié) | 2020年考試數(shù)學大綱考試內容和考試要求 | 2019年考試數(shù)學大綱考試內容和考試要求 | 變化 |
一、行列式 | 考試內容 行列式的概念和基本性質行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質。 2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。 |
考試內容 行列式的概念和基本性質行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質。 2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。 |
對比 :無變化 |
二、矩陣 | 考試內容 矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質。 2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質。 3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。 4.了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。 5.了解分塊矩陣及其運算。 |
考試內容 矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質。 2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質。 3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。 4.了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。 5.了解分塊矩陣及其運算。 |
對比 :無變化 |
三、向量 | 考試內容 向量的概念向量的線性組合和線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量的內積線性無關向量組的的正交規(guī)范化方法 考試要求 1.理解維向量、向量的線性組合與線性表示的概念。 2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法。 3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。 4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系。 5.了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法。 |
考試內容 向量的概念向量的線性組合和線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量的內積線性無關向量組的的正交規(guī)范化方法 考試要求 1.理解維向量、向量的線性組合與線性表示的概念。 2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法。 3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。 4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系。 5.了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法。 |
對比 :無變化 |
四、線性方程組 | 考試內容 線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解非齊次線性方程組的通解 考試要求 1.會用克拉默法則。 2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。 3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組的基礎解系和通解的求法。 4.理解非齊次線性方程組的解的結構及通解的概念。 5.會用初等行變換求解線性方程組。 |
考試內容 線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解非齊次線性方程組的通解 考試要求 1.會用克拉默法則。 2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。 3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組的基礎解系和通解的求法。 4.理解非齊次線性方程組的解的結構及通解的概念。 5.會用初等行變換求解線性方程組。 |
對比 :無變化 |
五、矩陣的特征值和特征向量 | 考試內容 矩陣的特征值和特征向量的概念、性質相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量。 2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。 3.理解實對稱矩陣的特征值和特征向量的性質。 |
考試內容 矩陣的特征值和特征向量的概念、性質相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量。 2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。 3.理解實對稱矩陣的特征值和特征向量的性質。 |
對比 :無變化 |
六、二次型 | 考試內容 二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規(guī)范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。 2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形。 3.理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
考試內容 二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規(guī)范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。 2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形。 3.理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
對比 :無變化 |
相關推薦:
2020考研大綱 | 2020考研政治大綱 | 2020考研英語大綱
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |