2020考研大綱及解析 ※ 大綱下載 ※ 關注微信
2020年考試大綱已經出來,與往年一樣,考研數學大綱沒什么變化,因此同學們可以繼續(xù)按照原先規(guī)劃進行復習做題。
下面是關于考研數學一、二、三中常微分方程部分的考試內容與考試要求對比。
數學一常微分方程部分要求:
考試內容
常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高于二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 歐拉(Euler)方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程及一階線性微分方程的解法.
3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程.
4.會用降階法解下列形式的微分方程:
5.理解線性微分方程解的性質及解的結構.
6.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.
7.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
8.會解歐拉方程.
9.會用微分方程解決一些簡單的應用問題.
數學二常微分方程部分要求:
考試內容
常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高于二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.
3.會用降階法解下列形式的微分方程:
4.理解二階線性微分方程解的性質及解的結構定理.
5.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.
6.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
7.會用微分方程解決一些簡單的應用問題.
數學三常微分方程與差分方程部分要求
考試內容
常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
3.會解二階常系數齊次線性微分方程.
4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式、指數函數、正弦函數、余弦函數的二階常系數非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數線性差分方程的求解方法.
7.會用微分方程求解簡單的經濟應用問題.
以上就是數一、二、三常微分方程部分的考考試內容與考試要求,希望同學們繼續(xù)努力
相關推薦:
2020考研大綱 | 2020考研政治大綱 | 2020考研英語大綱
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |