考研數(shù)學(xué)必考題求極 限解題方法如下:
1、利用極 限的四則運(yùn)算法則;
2、利用極 限存在準(zhǔn)則;
3、利用關(guān)于無(wú)窮小的定理(如有界函數(shù)乘以無(wú)窮小量仍為無(wú)窮小量等);
4、利用極 限存在的充要條件;
5、利用等價(jià)無(wú)窮小代換定理;
6、利用函數(shù)的連續(xù)性;
7、利用恒等變形;
8、利用兩個(gè)重要極 限及一些常用極 限;
9、利用洛必達(dá)法則求極 限.
(1)在極 限式子中,如果出現(xiàn)有非零的極 限因子,則用極 限的乘法把它分離出去,然后使用洛必達(dá)法則,可使計(jì)算變得簡(jiǎn)單。
(2)在未定型中,若能用簡(jiǎn)單的等價(jià)無(wú)窮小替換,則先替換,然后應(yīng)用洛必達(dá)法則,可使求導(dǎo)計(jì)算簡(jiǎn)單;
10、利用導(dǎo)數(shù)定義;
11、利用定積分定義;
12、利用泰勒公式.
考研萬(wàn)題庫(kù)下載丨微信搜索"萬(wàn)題庫(kù)考研"
編輯推薦:
2020考研《數(shù)學(xué)》大綱解析及備考指導(dǎo)匯總
2020考研數(shù)學(xué)概率基礎(chǔ)復(fù)習(xí)考點(diǎn)目錄總結(jié)
2020年考研數(shù)學(xué)高數(shù)核心知識(shí)點(diǎn)梳理總結(jié)