回歸分析
1.直線回歸:如果回歸分析中的殘差服從正態(tài)分布(大樣本時無需正態(tài)性),殘差與自變量無趨勢變化,則直線回歸(單個自變量的線性回歸,稱為簡單回歸),否則應(yīng)作適當?shù)淖儞Q,使其滿足上述條件。
2.多重線性回歸:應(yīng)變量(Y)為連續(xù)型變量(即計量資料),自變量(X1,X2,…,Xp)可以為連續(xù)型變量、有序分類變量或二分類變量。如果回歸分析中的殘差服從正態(tài)分布(大樣本時無需正態(tài)性),殘差與自變量無趨勢變化,可以作多重線性回歸。
1)觀察性研究:可以用逐步線性回歸尋找(擬)主要的影響因素
2)實驗性研究:在保持主要研究因素變量(干預(yù)變量)外,可以適當?shù)匾胍恍┢渌赡艿幕祀s因素變量,以校正這些混雜因素對結(jié)果的混雜作用
3.二分類的Logistic回歸:應(yīng)變量為二分類變量,自變量(X1,X2,…,Xp)可以為連續(xù)型變量、有序分類變量或二分類變量。
1)非配對的情況:用非條件Logistic回歸
(1)觀察性研究:可以用逐步線性回歸尋找(擬)主要的影響因素
(2)實驗性研究:在保持主要研究因素變量(干預(yù)變量)外,可以適當?shù)匾胍恍┢渌赡艿幕祀s因素變量,以校正這些混雜因素對結(jié)果的混雜作用
2)配對的情況:用條件Logistic回歸
(1)觀察性研究:可以用逐步線性回歸尋找(擬)主要的影響因素
(2)實驗性研究:在保持主要研究因素變量(干預(yù)變量)外,可以適當?shù)匾胍恍┢渌赡艿幕祀s因素變量,以校正這些混雜因素對結(jié)果的混雜作用
4.有序多分類有序的Logistic回歸:應(yīng)變量為有序多分類變量,自變量(X1,X2,…,Xp)可以為連續(xù)型變量、有序分類變量或二分類變量。
1)觀察性研究:可以用逐步線性回歸尋找(擬)主要的影響因素
2)實驗性研究:在保持主要研究因素變量(干預(yù)變量)外,可以適當?shù)匾胍恍┢渌赡艿幕祀s因素變量,以校正這些混雜因素對結(jié)果的混雜作用
5.無序多分類有序的Logistic回歸:應(yīng)變量為無序多分類變量,自變量(X1,X2,…,Xp)可以為連續(xù)型變量、有序分類變量或二分類變量。
1)觀察性研究:可以用逐步線性回歸尋找(擬)主要的影響因素
2)實驗性研究:在保持主要研究因素變量(干預(yù)變量)外,可以適當?shù)匾胍恍┢渌赡艿幕祀s因素變量,以校正這些混雜因素對結(jié)果的混雜作用
編輯推薦:
· | 2022考研復(fù)試聯(lián)系導(dǎo)師有哪些注意事 | 04-28 |
· | 2022考研復(fù)試面試常見問題 | 04-28 |
· | 2022年考研復(fù)試面試回答提問方法有 | 04-28 |
· | 2022考研復(fù)試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復(fù)試的訣竅介紹 | 04-27 |
· | 2022年考研復(fù)試英語如何準備 | 04-26 |
· | 2022年考研復(fù)試英語口語常見句式 | 04-26 |
· | 2022年考研復(fù)試的四個細節(jié) | 04-26 |
· | 2022考研復(fù)試準備:與導(dǎo)師及時交流 | 04-26 |
· | 2022考研復(fù)試面試的綜合技巧 | 04-26 |