1 過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2 兩點(diǎn)之間線(xiàn)段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9 同位角相等,兩直線(xiàn)平行
10 內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
11 同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行
12 兩直線(xiàn)平行,同位角相等
13 兩直線(xiàn)平行,內(nèi)錯(cuò)角相等
14 兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于 180°
18 推論 1 直角三角形的兩個(gè)銳角互余
19 推論 2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論 3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27 定理 1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理 2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31 推論 1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
33 推論 3 等邊三角形的各角都相等,并且每一個(gè)角都等于 60°
34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35 推論 1 三個(gè)角都相等的三角形是等邊三角形
36 推論 2 有一個(gè)角等于 60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個(gè)銳角等于 30°那么它所對(duì)的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理 1 關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形
43 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44 定理 3 兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上
45 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)
46 勾股定理 直角三角形兩直角邊 a、b 的平方和、等于斜邊 c 的平方,即 a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長(zhǎng) a、b、c 有關(guān)系 a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形
48 定理 四邊形的內(nèi)角和等于 360°
49 四邊形的外角和等于 360°
50 多邊形內(nèi)角和定理 n 邊形的內(nèi)角的和等于(n-2)×180°
51 推論 任意多邊的外角和等于 360°
52 平行四邊形性質(zhì)定理 1 平行四邊形的對(duì)角相等
53 平行四邊形性質(zhì)定理 2 平行四邊形的對(duì)邊相等
54 推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55 平行四邊形性質(zhì)定理 3 平行四邊形的對(duì)角線(xiàn)互相平分
56 平行四邊形判定定理 1 兩組對(duì)角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理 2 兩組對(duì)邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理 3 對(duì)角線(xiàn)互相平分的四邊形是平行四邊形
59 平行四邊形判定定理 4 一組對(duì)邊平行相等的四邊形是平行四邊形
60 矩形性質(zhì)定理 1 矩形的四個(gè)角都是直角
61 矩形性質(zhì)定理 2 矩形的對(duì)角線(xiàn)相等
62 矩形判定定理 1 有三個(gè)角是直角的四邊形是矩形
63 矩形判定定理 2 對(duì)角線(xiàn)相等的平行四邊形是矩形
64 菱形性質(zhì)定理 1 菱形的四條邊都相等
65 菱形性質(zhì)定理 2 菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角
66 菱形面積=對(duì)角線(xiàn)乘積的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四邊都相等的四邊形是菱形
68 菱形判定定理 2 對(duì)角線(xiàn)互相垂直的平行四邊形是菱形
69 正方形性質(zhì)定理 1 正方形的四個(gè)角都是直角,四條邊都相等
70 正方形性質(zhì)定理 2 正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角
71 定理 1 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的
72 定理 2 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分
73 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)
74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等
75 等腰梯形的兩條對(duì)角線(xiàn)相等
76 等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形
77 對(duì)角線(xiàn)相等的梯形是等腰梯形
78 平行線(xiàn)等分線(xiàn)段定理 如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79 推論 1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80 推論 2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第 三邊
81 三角形中位線(xiàn)定理 三角形的中位線(xiàn)平行于第三邊,并且等于它 的一半
82 梯形中位線(xiàn)定理 梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質(zhì) 如果 a:b=c:d,那么 ad=bc如果 ad=bc,那么 a:b=c:d
84 (2)合比性質(zhì) 如果 a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質(zhì) 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86 平行線(xiàn)分線(xiàn)段成比例定理 三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例
87 推論 平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn)),所得的對(duì)應(yīng)線(xiàn)段成比例
88 定理 如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形
90 定理 平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相似
91 相似三角形判定定理 1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93 判定定理 2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
94 判定定理 3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96 性質(zhì)定理 1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線(xiàn)的比與對(duì)應(yīng)角平分線(xiàn)的比都等于相似比
97 性質(zhì)定理 2 相似三角形周長(zhǎng)的比等于相似比
98 性質(zhì)定理 3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等
于它的余角的正切值
101 圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103 圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104 同圓或等圓的半徑相等
105 到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半
徑的圓
106 和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線(xiàn)段的垂直
平分線(xiàn)
107 到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108 到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距
離相等的一條直線(xiàn)
109 定理 不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111 推論 1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112 推論 2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形
114 定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦
相等,所對(duì)的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116 定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117 推論 1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118 推論 2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所
對(duì)的弦是直徑
119 推論 3 如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120 定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它
的內(nèi)對(duì)角
121①直線(xiàn) L 和⊙O 相交 d
、谥本(xiàn) L 和⊙O 相切 d=r
、壑本(xiàn) L 和⊙O 相離 d>r
122 切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123 切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124 推論 1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125 推論 2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126 切線(xiàn)長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,
圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127 圓的外切四邊形的兩組對(duì)邊的和相等
128 弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
129 推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130 相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(zhǎng)的積
相等
131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線(xiàn)段的比例中項(xiàng)
132 切割線(xiàn)定理 從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割
線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng)
133 推論 從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相
等 134 如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含 dr)
136 定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137 定理 把圓分成 n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正 n 邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正 n 邊形
138 定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139 正 n 邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140 定理 正 n 邊形的半徑和邊心距把正 n 邊形分成 2n 個(gè)全等的直角三角形
141 正 n 邊形的面積 Sn=pnrn/2 p 表示正 n 邊形的周長(zhǎng)
142 正三角形面積√3a/4 a 表示邊長(zhǎng)
143 如果在一個(gè)頂點(diǎn)周?chē)?k 個(gè)正 n 邊形的角,由于這些角的和應(yīng)為
360°,因此 k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長(zhǎng)計(jì)算公式:L=n 兀 R/180
145 扇形面積公式:S 扇形=n 兀 R^2/360=LR/2
146 內(nèi)公切線(xiàn)長(zhǎng)= d-(R-r) 外公切線(xiàn)長(zhǎng)= d-(R+r)
147 完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2
148 平方差公式:(a+b)(a-b)=a^2-b^2實(shí)用工具:常用數(shù)學(xué)公式乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理判別式
b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0 注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前 n 項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角 B 是邊 a 和邊 c 的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線(xiàn)標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長(zhǎng)公式 l=a*r a 是圓心角的弧度數(shù) r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積,L 是側(cè)棱長(zhǎng)
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
微信搜索"考試吧初高中" 關(guān)注獲得中考秘籍
相關(guān)推薦:
各地2019中考報(bào)名時(shí)間 ※ 2019中考時(shí)間安排 ※ 關(guān)注微信先報(bào)名
·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢(xún)?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門(mén)中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢(xún)?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年寧夏銀川中考錄取分?jǐn)?shù)線(xiàn)已公布
2022年遼寧鞍山中考錄取分?jǐn)?shù)線(xiàn)已公布
2022年福建廈門(mén)中考錄取分?jǐn)?shù)線(xiàn)已公布
2022年天津市西青區(qū)中考普高最低錄取分?jǐn)?shù)
2022年廣東深圳中考錄取分?jǐn)?shù)線(xiàn)已公布
2022年寧夏中考錄取分?jǐn)?shù)線(xiàn)匯總
2022年新疆中考錄取分?jǐn)?shù)線(xiàn)匯總
2022年寧夏固原中考錄取分?jǐn)?shù)線(xiàn)已公布
2022年天津市津南區(qū)中考普高最低錄取分?jǐn)?shù)
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢(xún)師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱(chēng)考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢(xún)師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷(xiāo)員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門(mén)戶(hù)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢(xún)師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)