視覺沖擊點4:分式。
類型(1):整數和分數混搭,提示做乘除。
例8:1200,200,40,(),10/3
A.10 B。20 C。30 D。5
解:整數和分數混搭,馬上聯想做商,很易得出答案為10
類型(2):全分數。解題思路為:能約分的先約分;能劃一的先劃一;突破口在于不宜變化的分數,稱作基準數;分子或分母跟項數必有關系。
例9:3/15,1/3,3/7,1/2,()
A.5/8 B。4/9 C。15/27 D。-3
解:能約分的先約分3/15=1/5;分母的公倍數比較大,不適合劃一;突破口為3/7,因為分母較大,不宜再做乘積,因此以其作為基準數,其他分數圍繞它變化;再找項數的關系3/7的分子正好是它的項數,1/5的分子也正好它的項數,于是很快發(fā)現分數列可以轉化為1/5,2/6,3/7,4/8,下一項是5 /9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9
A.7/3 B 10/9 C -5/18 D -2
解:沒有可約分的;但是分母可以劃一,取出分子數列有-4,10,12,7,1,后項減前項得
14,2,-5,-6,(-3.5),(-0.5) 與分子數列比較可知下一項應是7/(-2)=-3.5,所以分子數列下一項是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18
視覺沖擊點5:正負交疊;舅悸肥亲錾。
例11:8/9, -2/3, 1/2, -3/8,()
A 9/32 B 5/72 C 8/32 D 9/23
解:正負交疊,立馬做商,發(fā)現是一個等比數列,易得出A
視覺沖擊點6:根式。
類型(1)數列中出現根數和整數混搭,基本思路是將整數化為根數,將根號外數字移進根號內
例12:0 3 1 6 √2 12 ( ) ( ) 2 48
A. √3 24 B.√3 36 C.2 24 D.2 36
解:雙括號先隔項有0,1,√2,(),2;3,6,12,(),48.支數列一即是根數和整數混搭類型,以√2為基準數,其他數圍繞它變形,將整數劃一為根數有√0 √1 √2 ()√4,易知應填入√3;支數列二是明顯的公比為2的等比數列,因此答案為A
類型(2)根數的加減式,基本思路是運用平方差公式:a^2-b^2=(a+b)(a-b)
例13:√2-1,1/(√3+1),1/3,()
A(√5-1)/4 B 2 C 1/(√5-1) D √3
解:形式劃一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),這是根式加減式的基本變形形式,要考就這么考。同時,1/3=1/(1+2)=1/(1+√4),因此,易知下一項是1 /(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.