2012軍事交通學(xué)院碩士研究生各科目入學(xué)考試大綱
601 高等數(shù)學(xué)
參考書為《微積分》(第二版)(上、下),同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系主編,高等教育出版社出版。
(一)函數(shù)、極限、連續(xù)函數(shù)
本部分內(nèi)容主要介紹函數(shù)的基本概念、研究函數(shù)變化性態(tài)的主要工具——極限理論、以及函數(shù)的連續(xù)性。采取課堂系統(tǒng)講授、課后練習(xí)并有針對性地組織習(xí)題課與課堂討論,使學(xué)員達(dá)到:
1. 了解集合的概念,集合的基本運(yùn)算;知道“確界公理”;
2. 理解函數(shù)的概念,了解映射及反函數(shù)的概念;了解函數(shù)的基本特性,會證明函數(shù)的奇偶性;
3. 理解復(fù)合函數(shù)和初等函數(shù)的概念。會用函數(shù)關(guān)系描述一些簡單的實(shí)際問題;
4. 理解極限(包括左、右側(cè)極限)的概念,會用 — , — 定義驗(yàn)證簡單極限;
5. 理解和掌握極限四則運(yùn)算法則;
6. 了解極限的性質(zhì)(包括惟一性、有界性和保號性)和極限存在準(zhǔn)則(單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則),掌握用兩個重要極限求極限;
7. 理解無窮小、無窮大的概念,掌握無窮小與無窮大的關(guān)系,掌握有極限的量與無窮小量的關(guān)系,了解無窮小的階的概念,掌握無窮小的基本運(yùn)算。掌握用等價無窮小代換求極限;
8. 理解函數(shù)連續(xù)的概念,會判斷間斷點(diǎn)的類型;
9. 了解初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì),掌握應(yīng)用這些性質(zhì)特別是零點(diǎn)定理解決有關(guān)問題的方法。
(二)一元函數(shù)微分學(xué)
本部分內(nèi)容主要研究一元函數(shù)微分學(xué)的相關(guān)概念、理論和方法。采取課堂系統(tǒng)講授,、課后練習(xí)并有針對性地組織習(xí)題課與課堂討論,使學(xué)員達(dá)到:
1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)和微分的幾何意義及函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系;
2. 熟練掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)求導(dǎo)法,掌握基本初等函數(shù)的導(dǎo)數(shù)公式及反函數(shù)的求導(dǎo)方法;
3. 了解微分的四則運(yùn)算法則和一階微分形式不變性;
4. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù);
5. 掌握求分段函數(shù)、隱函數(shù)及參數(shù)式所確定的函數(shù)的導(dǎo)數(shù)的方法;
6. 會用導(dǎo)數(shù)概念解決一些簡單的實(shí)際問題;
7. 理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理,掌握中值定理的應(yīng)用,會用泰勒公式近似表示函數(shù);
8. 熟練掌握用洛必達(dá)(L’Hospital)法則求未定式極限的方法;
9. 理解函數(shù)極值的概念,掌握用導(dǎo)數(shù)判斷函數(shù)增減性和求極值的方法。掌握判斷函數(shù)的凹凸性的方法,會求拐點(diǎn)和曲線的漸進(jìn)線;
10. 會利用導(dǎo)數(shù)證明一些不等式;
11.掌握較簡單應(yīng)用問題的最大(小)值的求法;
12. 了解弧微分、曲率和曲率半徑的概念,會計算曲率和曲率半徑。
(三)一元函數(shù)積分學(xué)及其應(yīng)用
本部分內(nèi)容主要研究一元函數(shù)積分學(xué)的相關(guān)概念、理論和方法。采取課堂系統(tǒng)講授,、課后練習(xí)并有針對性地組織習(xí)題課與課堂討論,使學(xué)員達(dá)到:
1. 理解不定積分的概念及其性質(zhì);
2. 熟記并掌握不定積分的基本公式;
3. 熟練掌握換元積分和分部積分積分法;
4. 會求簡單有理函數(shù)和三角有理式的積分;
5. 理解定積分的概念及性質(zhì);
6. 理解積分上限的函數(shù)及其求導(dǎo)方法,熟練掌握牛頓(Newton)—萊布尼茨(Leibniz)公式,理解微分與積分的關(guān)系;
7. 掌握定積分的換元法和分部積分法;
8. 了解反常積分的概念,會求簡單的反常積分;
9. 理解和掌握定積分的微元法,掌握用微元法計算一些幾何量(面積、體積、弧長)、物理量(功、引力、水壓力)和其他一些簡單實(shí)際問題的方法。
(四)常微分方程
本部分內(nèi)容主要介紹微分方程的基本概念,介紹幾種簡單微分方程的解法。采取課堂系統(tǒng)講授,課后練習(xí)并有針對性地組織習(xí)題課與課堂討論,使學(xué)員達(dá)到:
1. 了解微分方程的定義、解、通解、初始條件和特解等概念;
2. 掌握可分離變量的方程和一階線性方程的解法;
3. 會解齊次方程和伯努利(Bernoulli)方程與歐拉方程及用變量代換求解簡單的一階方程;
4. 掌握降階法求方程 和 的解的方法;
5. 理解高階線性微分方程解的結(jié)構(gòu)定理;
6. 掌握二階常系數(shù)齊次線性微分方程的解法,會解高階常系數(shù)齊次線性方程;
7. 會求自由項為 、 的二階常系數(shù)非齊次線性方程的特解;
8. 了解數(shù)學(xué)建模初步原理, 能利用導(dǎo)數(shù)的幾何、物理意義及微元法建立一些簡單問題的微分方程。
(五)無窮級數(shù)
本部分內(nèi)容介紹無窮級數(shù)的相關(guān)概念、理論和基本方法。采取課堂系統(tǒng)講授,課后練習(xí)并有針對性地組織習(xí)題課與課堂討論,使學(xué)員達(dá)到:
1. 理解無窮級數(shù)收斂、發(fā)散及其和的概念,了解無窮級數(shù)的基本性質(zhì)及收斂的必要條件;
2. 理解幾何級數(shù)和p- 級數(shù)的斂散性;
3. 熟練掌握正項級數(shù)的比較審斂法和比值審斂法;
4. 了解交錯級數(shù)的萊布尼茨定理;
5. 理解無窮級數(shù)的絕對收斂、條件收斂的概念;
6. 理解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念;
7. 熟練掌握冪級數(shù)收斂區(qū)間的求法,了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)。掌握求簡單冪級數(shù)的和函數(shù)的方法;
8. 知道函數(shù)展開為泰勒級數(shù)的充要條件;
9. 掌握 、 、 、 和 的麥克勞林(Maclaurin)展開式,會利用這些展開式將一些簡單函數(shù)展開為冪級數(shù);
10. 會用冪級數(shù)進(jìn)行一些近似計算;
11. 了解函數(shù)展開為傅里葉(Fourier)級數(shù)的狄里克雷(Dirichlet)條件,會將定義在 和 上的函數(shù)展開為傅里葉級數(shù),會將定義在 上的函數(shù)展開為正弦級數(shù)和余弦級數(shù);
12. 說出了解傅氏級數(shù)的復(fù)數(shù)形式。
相關(guān)推薦: