第 1 頁:數(shù)學 |
第 4 頁:化學 |
數(shù)學
I.考試性質(zhì)
農(nóng)學門類聯(lián)考數(shù)學是為高等院校和科研院所招收農(nóng)學門類的碩士研究生而設置的具有選拔性質(zhì)的全國聯(lián)考科目。其目的是科學、公平、有效地測試考生是否具備繼續(xù)攻讀農(nóng)學門類各專業(yè)碩士學位所需要的知識和能力要求,評價的標準是高等學校農(nóng)學學科優(yōu)秀本科畢業(yè)生所能達到的及格或及格以上水平,以利于各高等院校和科研院所擇優(yōu)選拔,確保碩士研究生的招生質(zhì)量。
II.考查目標
農(nóng)學門類數(shù)學考試涵蓋高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計等公共基礎課程。要求考生比較系統(tǒng)地理解數(shù)學的基本概念和基本理論,掌握數(shù)學的基本方法,具備抽象思維能力、邏輯推理能力、空間想象能力、運算能力以及綜合運用所學的知識分析問題和解決問題的能力。
III.考試形式和試卷結構
一、試卷滿分及考試時間
試卷滿分為150分,考試時間為180分鐘.
二、答題方式
答題方式為閉卷、筆試.
三、試卷內(nèi)容結構
高等數(shù)學56%
線性代數(shù)22%
概率論與數(shù)理統(tǒng)計22%
四、試卷題型結構
單項選擇題8小題,每小題4分,共32分
填空題6小題,每小題4分,共24分
解答題(包括證明題)9小題,共94分
Ⅳ.考查內(nèi)容
高等數(shù)學
一、函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:
函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題中的函數(shù)關系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念.
6.了解極限的性質(zhì)與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關系.
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判斷函數(shù)間斷點的類型.
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì).
二、一元函數(shù)微分學
考試內(nèi)容
導數(shù)和微分的概念導數(shù)的幾何意義函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線和法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)和隱函數(shù)的微分法高階導數(shù)微分中值定理洛必達(L’Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)的最大值與最小值
考試要求
1.理解導數(shù)的概念及可導性與連續(xù)性之間的關系,了解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數(shù)的導數(shù)公式、導數(shù)的四則運算法則及復合函數(shù)的求導法則,會求分段函數(shù)的導數(shù),會求隱函數(shù)的導數(shù).
3.了解高階導數(shù)的概念,掌握二階導數(shù)的求法.
4.了解微分的概念以及導數(shù)與微分之間的關系,會求函數(shù)的微分.
5.理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握這兩個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應用.
8.會用導數(shù)判斷函數(shù)圖形的凹凸性[注:在區(qū)間(a,b)內(nèi),設函數(shù)f(x)具有二階導數(shù).當時,f(x)的圖形是凹的;當時,f(x)的圖形是凸的],會求函數(shù)圖形的拐點和漸近線(水平、鉛直漸近線).
三、一元函數(shù)積分學
考試內(nèi)容
原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)與其導數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分方法與分部積分法反常(廣義)積分定積分的應用
考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)與基本積分公式,掌握不定積分的換元積分法與分部積分法.
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓萊布尼茨公式,以及定積分的換元積分法與分部積分法.
3.會利用定積分計算平面圖形的面積和旋轉(zhuǎn)體的體積.
4.了解無窮區(qū)間上的反常積分的概念,會計算無窮區(qū)間上的反常積分.
四、多元函數(shù)微積分學
考試內(nèi)容
多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念多元函數(shù)偏導數(shù)的概念與計算多元復合函數(shù)的求導法與隱函數(shù)求導法二階偏導數(shù)全微分多元函數(shù)的極值和條件極值二重積分的概念、基本性質(zhì)和計算
考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
2.了解二元函數(shù)的極限與連續(xù)的概念.
3.了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,會求多元隱函數(shù)的偏導數(shù).
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件.
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標、極坐標).
五、常微分方程
考試內(nèi)容
常微分方程的基本概念變量可分離的微分方程一階線性微分方程
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程和一階線性微分方程的求解方法.
編輯推薦:
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |