第 1 頁:高等數(shù)學(xué) |
第 2 頁:線性代數(shù) |
第 3 頁:概率論與數(shù)理統(tǒng)計(jì) |
概率論與數(shù)理統(tǒng)計(jì)
一、隨機(jī)事件和概率
考試內(nèi)容
隨機(jī)事件與樣本空間事件的關(guān)系與運(yùn)算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨(dú)立性獨(dú)立重復(fù)試驗(yàn)
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算.
2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式.
3.理解事件獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法.
四、隨機(jī)變量的數(shù)字特征
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征.
2.會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望.
五、大數(shù)定律和中心極 限定理
考試內(nèi)容
切比雪夫(Chebyshev)不等式切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫不等式.
2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律).
3.了解棣莫弗-拉普拉斯定理(二項(xiàng)分布以正態(tài)分布為極 限分布)和列維-林德伯格定理(獨(dú)立同分布隨機(jī)變量序列的中心極 限定理).
七、參數(shù)估計(jì)
考試內(nèi)容
點(diǎn)估計(jì)的概念估計(jì)量與估計(jì)值矩估計(jì)法最大似然估計(jì)法估計(jì)量的評(píng)選標(biāo)準(zhǔn)區(qū)間估計(jì)的概念單個(gè)正態(tài)總體的均值和方差的區(qū)間估計(jì)兩個(gè)正態(tài)總體的均值差和方差比的區(qū)間估計(jì)
考試要求
1.理解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念.
2.掌握矩估計(jì)法(一階矩、二階矩)和最大似然估計(jì)法.
3.了解估計(jì)量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會(huì)驗(yàn)證估計(jì)量的無偏性.
4、理解區(qū)間估計(jì)的概念,會(huì)求單個(gè)正態(tài)總體的均值和方差的置信區(qū)間,會(huì)求兩個(gè)正態(tài)總體的均值差和方差比的置信區(qū)間.
八、假設(shè)檢驗(yàn)
考試內(nèi)容
顯著性檢驗(yàn)假設(shè)檢驗(yàn)的兩類錯(cuò)誤單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)
考試要求
1.理解顯著性檢驗(yàn)的基本思想,掌握假設(shè)檢驗(yàn)的基本步驟,了解假設(shè)檢驗(yàn)可能產(chǎn)生的兩類錯(cuò)誤.
2.掌握單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn).
相關(guān)推薦:
2020考研大綱 | 2020考研政治大綱 | 2020考研英語大綱
2020考研數(shù)學(xué)大綱 | 2020考研專業(yè)課大綱 | 關(guān)注微信獲取考研大綱
2020考研報(bào)名時(shí)間 | 2020考研報(bào)名費(fèi)用 | 2020考研報(bào)名條件