2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(8)
【例4】 P是⊙O的弦AB的中點(diǎn),過(guò)P點(diǎn)引⊙O的兩弦CD、EF,連結(jié)DE交AB于M,連結(jié)CF交AB于N。求證:MP=NP。(蝴蝶定理)
【分析】設(shè)GH為過(guò)P的直徑,F(xiàn) F’F,顯然‘∈⊙O。又P∈GH,∴PF’=PF!逷F PF‘,PA PB,∴∠FPN=∠F’PM,PF=PF‘。
又FF’⊥GH,AN⊥GH,∴FF‘∥AB!唷螰’PM+∠MDF‘=∠FPN+∠EDF’
=∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四點(diǎn)共圓!唷螾F’M=∠PDE=∠PFN。
∴△PFN≌△PF‘M,PN=PM。
【評(píng)注】一般結(jié)論為:已知半徑為R的⊙O內(nèi)一弦AB上的一點(diǎn)P,過(guò)P作兩條相交弦CD、EF,連CF、ED交AB于M、N,已知OP=r,P到AB中點(diǎn)的距離為a,則 。(解析法證明:利用二次曲線系知識(shí))
【例5】⊙O是給定銳角∠ACB內(nèi)一個(gè)定圓,試在⊙O及射線CA、CB上各求一點(diǎn)P、Q、R,使得△PQR的周長(zhǎng)為最小。
【分析】在圓O上任取一點(diǎn)P0,令P0 P1,P0 P2,連結(jié)P1P2分別交CA、CB于Q1、R1。顯然△P0Q1R1是在取定P0的情況下周長(zhǎng)最小的三角形。
設(shè)P0P1交CA于E,P0P2交CB于F,則P0Q1 +Q1R1 +R1P0= P1P2=2EF。
∵E、C、F、P0四點(diǎn)共圓,CP0是該圓直徑,由正弦定理,EF=CP0sin∠ECF。
∴當(dāng)CP0取最小值時(shí),EF為最小,從而△P0Q1R1的周長(zhǎng)為最小,于是有作法:
連結(jié)OC,交圓周于P,令P P1,P P2,連結(jié)P1P2分別交CA、CB于Q、R。則P、Q、R為所求。
【例6】 △ABC中,∠A≥90°,AD⊥BC于D,△PQR是它的任一內(nèi)接三角形。求證:PQ+QR+RP>2AD。
【分析】設(shè)P P’,P P‘’。則RP=RP‘,PQ=P’‘Q,AP=AP’=AP‘’。
∴PQ+QR+RP= P‘’Q+QR+RP‘。
又∠A≥90°,∴∠P’AP+∠P‘’AP=2∠A≥180°,A點(diǎn)在線段P‘P’‘上或在凸四邊形P’RQP‘’的內(nèi)部!郟‘’Q+QR+RP‘>AP’+AP‘’=2AP>2AD。
∴PQ+QR+RP>2AD。
【評(píng)注】如果題設(shè)中有角平分線、垂線,或圖形是等腰三角形、圓等軸對(duì)稱圖形,可以將圖形或其部分進(jìn)行軸對(duì)稱變換。此外,也可以適當(dāng)選擇對(duì)稱軸將一些線段的位置變更,以便于比較它們之間的大小。
【例7】 以△ABC的邊AB、AC為斜邊分別向外作等腰直角三角形APB、AQC,M是BC的中點(diǎn)。求證:MP=MQ,MP⊥MQ。
【分析】延長(zhǎng)BP到E,使PE=BP,延長(zhǎng)CQ到F, 使QF=CQ,則△BAE、△CAF都是等腰三角形。
顯然:E B,C F,∴EC=BF,EC⊥BF。
而PM EC,MQ BF,∴MP=MQ,MP⊥MQ。
【例8】 已知O是△ABC內(nèi)一點(diǎn),∠AOB=∠BOC=∠COA=120°;P是△ABC內(nèi)任一點(diǎn),求證:PA+PB+PC≥OA+OB+OC。(O為費(fèi)馬點(diǎn))
【分析】將C C‘,O O’, P P‘,連結(jié)OO’、PP‘。則△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘ =PB。顯然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四點(diǎn)共線。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
【例9】⊙O與△ABC的三邊BC、CA、AB分別交于點(diǎn)A1、A2、B1、B2、C1、C2,過(guò)上述六點(diǎn)分別作所在邊的垂線a1、a2、b1、b2、,設(shè)a1、b2、c1三線相交于一點(diǎn)D。求證:a2、b1、c2三線也相交于一點(diǎn)。
【分析】∵a1、a2關(guān)于圓心O成中心對(duì)稱,
∴a1 a2。
同理,b1 b2,c1 c2。
∴a1、b2、c1的公共點(diǎn)D在變換R(O,180°)下的像D’也是像a2、b1、c2的公共點(diǎn),即a2、b1、c2三線也相交于一點(diǎn)。
【例10】AD是△ABC的外接圓O的直徑,過(guò)D作⊙O的切線交BC于P,連結(jié)并延長(zhǎng)PO分別交AB、AC于M、N。求證:OM=ON。
【分析】設(shè)O O‘,N N’,而M B,
∵M(jìn)、O、N三點(diǎn)共線,∴B、O‘、N’三點(diǎn)共線,且 。
取BC中點(diǎn)G,連結(jié)OG、O‘G、DG、DB。
∵∠OGP=∠ODP=90°,∴P、D、G、O四點(diǎn)共圓。
∴∠ODG=∠OPG,而由MN∥BN’有∠OPG=∠O‘BG,
∴∠ODG=∠O’BG,∴O‘、B、D、G四點(diǎn)共圓。
∴∠O’GB=∠O‘DB。而∠O’DB=∠ACB,∴∠O‘GB=∠ACB,O’G∥AC,
而G是BC的中點(diǎn),∴O‘是BN’的中點(diǎn),O‘B= O’ N‘,
∴OM=ON。
相關(guān)推薦:·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類(lèi)整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門(mén)中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷(xiāo)員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門(mén)戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)