不定方程在國家公務(wù)員考試行測中比較常見的題型,不定方程的最大特點(diǎn)就是列式比較簡單,但是求解難,教育專家在此就不定方程如何快速求解進(jìn)行講解。
不定方程指的是未知數(shù)的個(gè)數(shù)要多于方程的個(gè)數(shù),可用多種方法進(jìn)行解答,如下所示:
1、尾數(shù)法
例:有271位游客欲乘大、小兩種客車旅游,已知大客車有37個(gè)座位,小客車有20個(gè)座位。為保證每位游客均有座位,且車上沒有空座位,則需要大客車的輛數(shù)是( )。
A.1輛 B.3輛 C.2輛 D.4輛
解析:顯然27大的尾數(shù)是1,那哪個(gè)數(shù)乘以37得到的尾數(shù)是1呢,在四個(gè)選項(xiàng)中只有B符合,因此選B。
2、奇偶性
例:超市將99個(gè)蘋果裝進(jìn)兩種包裝盒,大包裝盒每個(gè)裝12個(gè)蘋果,小包裝盒每個(gè)裝5個(gè)蘋果,共用了十多個(gè)盒子剛好裝完。問兩種包裝盒相差多少個(gè)?【2012-國考】
A.3 B.4 C.7 D.13
解析:
3、質(zhì)合性
注意質(zhì)數(shù)2的應(yīng)用。
例:某兒童藝術(shù)培訓(xùn)中心有5名鋼琴教師和6名拉丁舞教師,培訓(xùn)中心將所有的鋼琴學(xué)員和拉丁舞學(xué)員共76人分別平均地分給各個(gè)老師帶領(lǐng),剛好能夠分完,且每位老師所帶的學(xué)生數(shù)量都是質(zhì)數(shù)。后來由于學(xué)生人數(shù)減少,培訓(xùn)中心只保留了4名鋼琴教師和3名拉丁舞教師,但每名教師所帶的學(xué)生數(shù)量不變,那么目前培訓(xùn)中心還剩下學(xué)員多少人?【2012-國考】
A.36 B.37 C.39 D.41
解析:又已知每位老師所帶的學(xué)生數(shù)量都是質(zhì)數(shù),即是質(zhì)數(shù)又是偶數(shù)的只有2,所以推出鋼琴學(xué)員為2,則拉丁學(xué)員為11,那么目前培訓(xùn)中心還剩下學(xué)員4鋼+3拉=8+33=41, 所以選D。
總結(jié):在題目中如出現(xiàn)質(zhì)數(shù)這個(gè)詞,首先應(yīng)想到2。
教育專家認(rèn)為,不定方程的解法都比較容易掌握,屬于不易失分的題型,考生們要在掌握做題方法的基礎(chǔ)上多總結(jié)、多反思,從而獲得質(zhì)的提升。
關(guān)注"566公務(wù)員"官方微信,獲取最新資訊、職位表、真題答案等信息!
公務(wù)員考試題庫【手機(jī)題庫下載】丨微信搜索"566公務(wù)員"
相關(guān)推薦: