(二)自主探究,證實規(guī)律:
1、理解標目:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,所以一開始我先不急于動手探索,先讓學生明白什么是三角形的內角和。
2、 猜想:目標明確后,我就讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。
3、 驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量量、拼一拼、折一折――說說、議議――小結。
4、 鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:根據(jù)普遍三角形兩個角求一個角,根據(jù)特殊的三角形求出三角形的三個角的度數(shù){具體在練習一,第二、應用延伸練習一中都有體現(xiàn)},從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、 拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節(jié)課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養(yǎng)了學生應用知識的能力,又培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)新精神。
6、說課堂總結
采用用先讓學生歸納補充,然后教師再補充的方式進行:⑴這節(jié)課我們學了什么知識?你有什么收獲?(2)看書設疑。充分發(fā)揮學生的主體意識,培養(yǎng)學生的語言概括能力。
六.說教學板書
這是一節(jié)操作課,學生要掌握的概念較少,所以整個板書我以表格為主,主要把學生大量的驗證成果展示出,讓學生親自動手后再通過觀察,一目了然,得出結論——三角形的內角和是180度。簡間但又層層涉及,形式活潑,色彩也較豐富。
總之,本節(jié)課教學活動中我力求充分體現(xiàn)一下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。
相關推薦:教師資格證認定小學數(shù)學說課稿:確定位置北京 | 天津 | 上海 | 江蘇 | 山東 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內蒙古 |