各位老師:
大家好!
我是××××××,我很珍惜這次難得的學(xué)習(xí)機會,懇請老師對我的說課提出寶貴意見.我說課的內(nèi)容是人教版實驗教材七年級下第九章第2節(jié)《實際問題與一元一次不等式》的教學(xué)設(shè)計,下面我分別從教學(xué)內(nèi)容的分析、教學(xué)目標(biāo)的確定、教學(xué)方法的選擇和教學(xué)過程的設(shè)計四個方面來說明我對這節(jié)課的教學(xué)設(shè)想。
一、教學(xué)內(nèi)容的分析
1.教材的地位和作用
(1)本 節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
2.教學(xué)的重點和難點
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
二、教學(xué)目標(biāo)的確定
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2.通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3.在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
三、教學(xué)方法的選擇
1、教學(xué)方法
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值。
2、教學(xué)手段
教學(xué)中使用多媒體投影、計算機輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
四、教學(xué)過程的設(shè)計
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
列式:
選甲公司所需費用: (元)
選乙公司所需費用: (元)
結(jié)論:580人時選擇乙公司能讓每位學(xué)生的餐費平均算來更低。
相關(guān)推薦:教師資格證認(rèn)定小學(xué)數(shù)學(xué)說課稿:確定位置北京 | 天津 | 上海 | 江蘇 | 山東 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |