考試要求
1. 理解原函數(shù)的概念,理解不定積分和定積分的概念。
2. 熟練掌握不定積分的基本公式,熟練掌握不定積分和定積分的性質(zhì)及定積分中值定理。掌握牛頓-萊布尼茨公式。熟練掌握不定積分和定積分的換元積分法與分部積分法。
3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。
4. 理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù)。
5. 理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計算一些簡單的廣義積分。
6. 掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。
(四)向量代數(shù)和空間解析幾何
考試內(nèi)容
向量的概念 向量的線性運算 向量的數(shù)量積、向量積和混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標(biāo)表達(dá)式及其運算 單位向量 方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念 平面方程、直線方程 平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件 點到平面和點到直線的距離 球面 母線平行于坐標(biāo)軸的柱面 旋轉(zhuǎn)軸為坐標(biāo)軸的旋轉(zhuǎn)曲面的方程 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標(biāo)面上的投影曲線方程
考試要求
1. 熟悉空間直角坐標(biāo)系,理解向量及其模的概念。
2. 熟練掌握向量的運算(線性運算、數(shù)量積、向量積),掌握兩向量垂直、平行的條件。
3. 理解向量在軸上的投影,了解投影定理及投影的運算。理解方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,會用坐標(biāo)表達(dá)式進行向量的運算。
4. 熟悉平面方程和空間直線方程的各種形式,熟練掌握平面方程和空間直線方程的求法。
5. 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題。
6. 會求空間兩點間的距離、點到直線的距離以及點到平面的距離。
7. 了解空間曲線方程和曲面方程的概念。
8. 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。
9. 了解常用二次曲面的方程、圖形及其截痕,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。
(五)多元函數(shù)微分學(xué)
考試內(nèi)容
多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限和連續(xù) 有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)和全微分的概念及求法 全微分存在的必要條件和充分條件 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 高階偏導(dǎo)數(shù)的求法 空間曲線的切線和法平面 曲面的切平面和法線 方向?qū)?shù)和梯度 二元函數(shù)的泰勒公式 多元函數(shù)的極值和條件極值 拉格朗日乘數(shù)法 多元函數(shù)的最大值、最小值及其簡單應(yīng)用 全微分在近似計算中的應(yīng)用
考試要求
1. 理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。
2. 理解二元函數(shù)的極限與連續(xù)性的概念及基本運算性質(zhì),了解二元函數(shù)累次極限和極限的關(guān)系 會判斷二元函數(shù)在已知點處極限的存在性和連續(xù)性 了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3. 理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念 了解二元函數(shù)可微、偏導(dǎo)數(shù)存在及連續(xù)的關(guān)系,會求偏導(dǎo)數(shù)和全微分,了解二元函數(shù)兩個混合偏導(dǎo)數(shù)相等的條件 了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。
4. 熟練掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法。
5. 熟練掌握隱函數(shù)的求導(dǎo)法則。
6. 理解方向?qū)?shù)與梯度的概念并掌握其計算方法。
7. 理解曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。
8. 了解二元函數(shù)的二階泰勒公式。
9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值、最小值,并會解決一些簡單的應(yīng)用問題。
10. 了解全微分在近似計算中的應(yīng)用