考研網(wǎng)校 模擬考場 考研資訊 復(fù)習(xí)指導(dǎo) 歷年真題 模擬試題 經(jīng)驗 考研查分 考研復(fù)試 考研調(diào)劑 論壇 短信提醒 | ||
考研英語| 資料 真題 模擬題 考研政治| 資料 真題 模擬題 考研數(shù)學(xué)| 資料 真題 模擬題 專業(yè)課| 資料 真題 模擬題 在職研究生 |
考研網(wǎng)校 模擬考場 考研資訊 復(fù)習(xí)指導(dǎo) 歷年真題 模擬試題 經(jīng)驗 考研查分 考研復(fù)試 考研調(diào)劑 論壇 短信提醒 | ||
考研英語| 資料 真題 模擬題 考研政治| 資料 真題 模擬題 考研數(shù)學(xué)| 資料 真題 模擬題 專業(yè)課| 資料 真題 模擬題 在職研究生 |
高等數(shù)學(xué)是考研數(shù)學(xué)內(nèi)容最多的一部分,大綱規(guī)定高等數(shù)學(xué)部分在數(shù)學(xué)1試卷中占60%的分數(shù)、數(shù)學(xué)2占80%、數(shù)學(xué)3和數(shù)學(xué)4也要占到50%的分數(shù)。 所以高等數(shù)學(xué)這部分是相當(dāng)重要的,同學(xué)們是要重點復(fù)習(xí)的,在復(fù)習(xí)過程中有幾個問題是需要注意的。
要明確考試重點,充分把握重點。比如高數(shù)第一章“函數(shù)極限和連續(xù)”的重點就是不定式的極限,我們要充分掌握求不定式極限的各種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內(nèi)容;對函數(shù)的連續(xù)性的探討也是考試的重點,這要求我們需要充分理解函數(shù)連續(xù)的定義和掌握判斷連續(xù)性的方法。對于導(dǎo)數(shù)和微分,其實重點不是給一個函數(shù)考導(dǎo)數(shù),而重點是導(dǎo)數(shù)的定義,也就是抽象函數(shù)的可導(dǎo)性。對于積分部分,定積分、分段函數(shù)的積分、帶絕對值的函數(shù)的積分等各種積分的求法都是重要的題型,總而言之看上不好處理的函數(shù)的積分常常是考試的重點。而且求積分的過程中,一定要注意積分的對稱性,我們要利用分段積分去掉絕對值把積分求出來。還有中值定理這個地方一般每年都要考一個題的,多看看以往考試題型,研究一下考試規(guī)律。對于多維函數(shù)的微積分部分里,多維隱函數(shù)的求導(dǎo),復(fù)合函數(shù)的偏導(dǎo)數(shù)等是考試的重點。二重積分的計算,當(dāng)然數(shù)學(xué)1里面還包括了三重積分,這里面每年都要考一個題目。另外曲線和曲面積分,這也是必考的重點內(nèi)容。一階微分方程,還有無窮級數(shù),無窮級數(shù)的求和(主要是間接的展開法)。其實,重點主要就是這些了。為了充分把握重點,平時應(yīng)該多研究歷年真題,也能更好地了解命題思路和難易度。
對于各種類型的題目,都要掌握各自的解題方法。比如二重積分的求法,首先要把積分的區(qū)域畫出來,畫清楚各級函數(shù),要確定是X積分還是Y積分,你在這個區(qū)域畫一條線,如果是X積分你做一條平行X軸的射線穿過這個區(qū)域。穿進就是積分的下限,穿出就是積分的上限。一般把這個基本原則掌握了,考試就不會有問題了,題型可以變換但是方法是不變的。
數(shù)學(xué)要考高分就要明確數(shù)學(xué)要考些什么。數(shù)學(xué)主要一個是考基礎(chǔ),包括基本概念、基本理論、基本運算,數(shù)學(xué)本來就是一門基礎(chǔ)的學(xué)科,如果基礎(chǔ)、概念、基本運算不太清楚,運算不太熟練那你肯定是考不好的。所以基礎(chǔ)一定要打扎實。高數(shù)的基礎(chǔ)應(yīng)該著重放在極限、導(dǎo)數(shù)、不定積分這三方面,后面當(dāng)然還有定積分、一元微積分的應(yīng)用,還有中值定理、多元函數(shù)、微分、線面積分等等內(nèi)容,這些內(nèi)容可以看成那三部分內(nèi)容的聯(lián)系和應(yīng)用,這就是它的基礎(chǔ)。數(shù)學(xué)要考的另一部分是簡單的分析綜合能力。因為現(xiàn)在高數(shù)中的一些考題很少有單純考一個知識點的,一般都是多個知識點的綜合。還有一個就是數(shù)學(xué)的解應(yīng)用題的能力。解應(yīng)用題要求的知識面比較廣,包括數(shù)學(xué)的知識比較要扎實,還有幾何、物理、化學(xué)、力學(xué)等等這些好多知識。當(dāng)然它主要考的就是數(shù)學(xué)在幾何中的應(yīng)用,在力學(xué)中的應(yīng)用,在物理中的吸引力、電力做功等等這些方面。數(shù)學(xué)要考的第四個方面就是運算的熟練程度,換句話說就是解題的速度。如果能夠圍繞著這幾個方面進行有針對性地復(fù)習(xí),取得高分就不會是難事了。
數(shù)學(xué)復(fù)習(xí)是要保證熟練度的,平時應(yīng)該多訓(xùn)練,應(yīng)該一抓到底,應(yīng)該經(jīng)常練,一天至少保證三個小時。把我們平時講的一些概念、定理、公式復(fù)習(xí)好,牢牢地記住。同時數(shù)學(xué)還是一種基本技能的訓(xùn)練,像騎自行車一樣。盡管你原來騎得非常好,但是長時間不騎,再騎總有點不習(xí)慣。所以經(jīng)常練習(xí)是很重要的,天天做、天天看,一直到考試的那一天。這樣的話,就絕對不會生疏了,解題速度就能夠跟上去。
復(fù)習(xí)數(shù)學(xué)不能眼高手低,在我們還沒有建立起來完備的知識結(jié)構(gòu)之前,一帶而過的復(fù)習(xí)必然會難以把握題目中的重點,忽略精妙之處。題目看懂了不代表這個題目就會做了,其實真正動手就會碰到很多問題,去解決這些問題就是提高自己的過程。只有通過動手練習(xí),我們才能規(guī)范答題模式,提高解題和運算的熟練程度,這些都要通過自己不斷的摸索去體會。
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |