四、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.知識范圍
(1)向量的概念
向量的定義 向量的模 單位向量 向量在坐標(biāo)軸上的投影 向量的坐標(biāo)表示法 向量的方向余弦
(2)向量的線性運算
向量的加法 向量的減法 向量的數(shù)乘
(3)向量的數(shù)量積
二向量的夾角 二向量垂直的充分必要條件
(4)二向量的向量積 二向量平行的充分必要條件
2.要求
(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。
(2)熟練掌握向量的線性運算、向量的數(shù)量積與向量積的計算方法。
(3)熟練掌握二向量平行、垂直的充分必要條件。
(二)平面與直線
1.知識范圍
(1)常見的平面方程
點法式方程 一般式方程
(2)兩平面的位置關(guān)系(平行、垂直和斜交)
(3)點到平面的距離
(4)空間直線方程
標(biāo)準式方程(又稱對稱式方程或點向式方程)一般式方程 參數(shù)式方程
(5)兩直線的位置關(guān)系(平行、垂直)
(6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)
2.要求
(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。會求兩平面間的夾角。
(2)會求點到平面的距離。
(3)了解直線的一般式方程,會求直線的標(biāo)準式方程、參數(shù)式方程。會判定兩直線平行、垂直。
(4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。
(三)簡單的二次曲面
1.知識范圍
球面 母線平行于坐標(biāo)軸的柱面 旋轉(zhuǎn)拋物面 圓錐面 橢球面
2.要求
了解球面、母線平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。
相關(guān)推薦:
2017年自學(xué)考試《計算機應(yīng)用基礎(chǔ)》知識點匯總