【例3】有一隊士兵排成若干層的中空方針,外層共有68人,中間一層共有44人,該方陣的總?cè)藬?shù)是( )
A.296
B.308
C.324
D.348
【答案】B。方陣外層人數(shù)和相鄰層人數(shù)差8,是公差為8的等差數(shù)列。利用求和公式:總數(shù)=層數(shù)×中位數(shù)=層數(shù)×44;雖然層數(shù)未知,但出現(xiàn)乘積形式,見到乘積想因子,因此總數(shù)應(yīng)該有4因子和11因子。但利用4因子不能進行有效的排除選項,缺乏區(qū)分性。因此利用11因子進行判別。選項中只有B可以被11整除,因此選B
例1-例3中,利用常規(guī)方法也可容易求出答案,很多同學(xué)也傾向于直接解。但速度明顯不如利用“因子特性”快速便捷。同學(xué)們處理這類問題時應(yīng)刻意鍛煉“因子特性”思維。
【例4】小明騎車去外婆家,原計劃用5小時30分鐘,由于途中有3又3/5千米道路不平,走這段路時,速度相當于原計劃速度的3/4,因此,晚到了12分鐘,請問小明家和外婆家相距多少千米?
A.33
B.32
C.31
D.34
【答案】A。該題屬于行程問題,距離=速度×?xí)r間=速度×11/2= (速度×11)/2,因此該題轉(zhuǎn)化為求速度。速度在該題中很難求出,同時,發(fā)現(xiàn)該題又出現(xiàn)了乘法,見到乘法想因子,發(fā)現(xiàn)11因子具備高區(qū)分性,選項中只有A包含11因子,因此選A
【例5】甲、乙、丙三人合修一條公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。共得收入1800元,如果按工作量計酬,則乙可獲得收入為?( )
A.330元
B.910元
C.560元
D.980元
【答案】B。該題屬于工程問題,工程問題的核心在于設(shè)“1”,即設(shè)出工程總量。但該題總量很難設(shè)出,因此,該題屬于工程問題中的難題。我們看求什么,乙總收入=乙工作天數(shù)×每天的報酬=(6+2+5)×每天的報酬=13×每天的報酬;雖然每天報酬我們未知,但又出現(xiàn)乘法,“見到乘法想因子”,利用13因子進行判別。選項中只有B可以被13整除,因此選B
例4-例5中,利用常規(guī)方法很難求出答案。對于這種難題就是暗示同學(xué)們有簡單方法,一般是可以利用排除法進行選擇的。而“因子特征”排除是最常見的帶入排除方式。
【例6】某商場促銷,晚上八點以后全場商品在原來折扣基礎(chǔ)上再打9.5折,付款時滿400元再減100元。已知某鞋柜全場8.5折,某人晚上九點多去該鞋柜買了一雙鞋,花了384.5元,問這雙鞋的原價為多少錢?( )
A.550元
B.600元
C.650元
D.700元
【答案】B。該題屬于經(jīng)濟利潤問題,根據(jù)題意可知:原價=(384.5+100)/(0.85×0.95) = (484.5)/(0.85×0.95),對于該式子明顯很難算出,因此想到利用因子特性。484.5里面有3因子,而0.85和0.95里面都沒有3因子,因此3因子沒有被約掉,因此答案中必然包含3因子。選項中只有B包含3因子,因此選B
例6中,式子已經(jīng)列出但直接運算難求出答案。這種題型通常情況應(yīng)用因子特性進行排除。
關(guān)注"566公務(wù)員"官方微信,獲取真題及答案、最新資訊等信息!
公務(wù)員考試題庫【手機題庫下載】丨微信搜索"566公務(wù)員"