★【速算技巧七:湊整法】
要點(diǎn):
"湊整法"是指在計(jì)算過程當(dāng)中,將中間結(jié)果湊成一個(gè)"整數(shù)"(整百、整千等其它方便計(jì)算形式的數(shù)),從而簡化計(jì)算的速算方式。"湊整法"包括加/減法的湊整,也包括乘/除法的湊整。
在資料分析的計(jì)算當(dāng)中,真正意義上的完全湊成"整數(shù)"基本上是不可能的,但由于資料分析不要求絕對(duì)的精度,所以湊成與"整數(shù)"相近的數(shù)是資料分析"湊整法"所真正包括的主要內(nèi)容。
★【速算技巧八:放縮法】
要點(diǎn):
"放縮法"是指在數(shù)字的比較計(jì)算當(dāng)中,如果精度要求并不高,我們可以將中間結(jié)果
進(jìn)行大膽的"放"(擴(kuò)大)或者"縮"(縮小),從而迅速得到待比較數(shù)字大小關(guān)系的
速算方式。
要點(diǎn):
若A>B>0,且C>D>0,則有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
這四個(gè)關(guān)系式即上述四個(gè)例子所想要闡述的四個(gè)數(shù)學(xué)不等關(guān)系,是我們在做題當(dāng)中經(jīng)常需要用到的非常簡單、非常基礎(chǔ)的不等關(guān)系,但卻是考生容易忽略,或者在考場之上容易漏掉的數(shù)學(xué)關(guān)系,其本質(zhì)可以用"放縮法"來解釋。
★【速算技巧九:增長率相關(guān)速算法】
要點(diǎn):
計(jì)算與增長率相關(guān)的數(shù)據(jù)是做資料分析題當(dāng)中經(jīng)常遇到的題型,而這類計(jì)算有一些常用的速算技巧,掌握這些速算技巧對(duì)于迅速解答資料分析題有著非常重要的輔助作用。
兩年混合增長率公式:
如果第二期與第三期增長率分別為r1與r2,那么第三期相對(duì)于第一期的增長率為:
r1+r2+r1× r2
增長率化除為乘近似公式:
如果第二期的值為A,增長率為r,則第一期的值A(chǔ)':
A'= A/(1+r)≈A×(1-r)
(實(shí)際上左式略大于右式,r越小,則誤差越小,誤差量級(jí)為r^2)
平均增長率近似公式:
如果N年間的增長率分別為r1、r2、r3……rn,則平均增長率:
r≈上述各個(gè)數(shù)的算術(shù)平均數(shù)
(實(shí)際上左式略小于右式,增長率越接近,誤差越小)
求平均增長率時(shí)特別注意問題的表述方式,例如:
1、"從2004年到2007年的平均增長率"一般表示不包括2004年的增長率;
2、"2004、2005、2006、2007年的平均增長率"一般表示包括2004年的增長率。
"分子分母同時(shí)擴(kuò)大/縮小型分?jǐn)?shù)"變化趨勢判定:
1、A/B中若A與B同時(shí)擴(kuò)大,則①若A增長率大,則A/B擴(kuò)大②若B增長率大,則A/B縮小;A/B中若A與B同時(shí)縮小,則①若A減少得快,則A/B縮小②若B減少得快,則A/B擴(kuò)大。
2、A/(A+B)中若A與B同時(shí)擴(kuò)大,則①若A增長率大,則A/(A+B)擴(kuò)大②若B增長率大,則A/(A+B)縮小;A/(A+B)中若A與B同時(shí)縮小,則①若A減少得快,則A/(A+B)縮、谌鬊減少得快,則A/(A+B)擴(kuò)大。
多部分平均增長率:
如果量A與量B構(gòu)成總量"A+B",量A增長率為a,量B增長率為b,量"A+B"的增長率為r,則A/B=(r-b)/(a-r),一般用"十字交叉法"來簡單計(jì)算。
注意幾點(diǎn)問題:
1、 r一定是介于a、b之間的,"十字交叉"相減的時(shí)候,一個(gè)r在前,另一個(gè)r在后;
2、 算出來的比例是未增長之前的比例,如果要計(jì)算增長之后的比例,應(yīng)該在這個(gè)比例上再乘以各自的增長率。
等速率增長結(jié)論:
如果某一個(gè)量按照一個(gè)固定的速率增長,那么其增長量將越來越大,并且這個(gè)量的
數(shù)值成"等比數(shù)列",中間一項(xiàng)的平方等于兩邊兩項(xiàng)的乘積。
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |