點擊查看:2019年4月自考高等數(shù)學(一)考試重點匯總
五、多元函數(shù)微積分學
(一)多元函數(shù)微分學
1.知識范圍
(1)多元函數(shù)
多元函數(shù)的定義 二元函數(shù)的幾何意義 二元函數(shù)極限與連續(xù)的概念
(2)偏導數(shù)與全微分
偏導數(shù) 全微分 二階偏導數(shù)
(3)復(fù)合函數(shù)的偏導數(shù)
(4)隱函數(shù)的偏導數(shù)
(5)二元函數(shù)的無條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二次函數(shù)的表達式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計算不作要求)。
(2)理解偏導數(shù)概念,了解偏導數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導數(shù)計算方法。
(4)掌握復(fù)合函數(shù)一階偏導數(shù)的求法。
(5)會求二元函數(shù)的全微分。
(6)掌握由方程 所確定的隱函數(shù) 的一階偏導數(shù)的計算方法。
(7)會求二元函數(shù)的無條件極值。會用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識范圍
(1)二重積分的概念
二重積分的定義二重積分的幾何意義
(2)二重積分的性質(zhì)
(3)二重積分的計算
(4)二重積分的應(yīng)用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標系及極坐標系下的計算方法。
(3)會用二重積分解決簡單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。
六、無窮級數(shù)
(一)數(shù)項級數(shù)
1.知識范圍
(1)數(shù)項級數(shù)
數(shù)項級數(shù)的概念 級數(shù)的收斂與發(fā)散 級數(shù)的基本性質(zhì) 級數(shù)收斂的必要條件
(2)正項級數(shù)收斂性的判別法
比較判別法 比值判別法
(3)任意項級數(shù)交錯級數(shù) 絕對收斂 條件收斂 萊布尼茨判別法
2.要求
(1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。
(2)掌握正項級數(shù)的比值判別法。會用正項級數(shù)的比較判別法。
(3)掌握幾何級數(shù)、調(diào)和級數(shù)與級數(shù)的收斂性。
(4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。
(二)冪級數(shù)
1.知識范圍
(1)冪級數(shù)的概念
收斂半徑 收斂區(qū)間
(2)冪級數(shù)的基本性質(zhì)
(3)將簡單的初等函數(shù)展開為冪級數(shù)
2.要求
(1)了解冪級數(shù)的概念。
(2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項求導與逐項積分)。
(3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點)的方法。
(4)會運用麥克勞林(Maclaurin)公式,將一些簡單的初等函數(shù)展開為冪級數(shù)。
編輯推薦:
2019自考《中國近現(xiàn)代史綱要》沖刺試卷及答案匯總