6.各個數(shù)位上數(shù)字之和能被3(9)整除的整數(shù)必能被3(9)整除。
如478323是否能被3(9)整除?
由于478323=4×100000+7×10000+8×1000+3×100+2×10+3
=4×(99999+1)+7(9999+1)+8×(999+1)+3×(99+1)+2×(9+1)+3 =(4×99999+7×9999+8×999+3×99+2×9)+(4+7+8+3+2+3)
前一括號里的各項都是3(9)的倍數(shù),因此,判斷478323是否能被3(9)整除,只要考察第二括號的各數(shù)之和(4+7+8+3+2+3)能否被3(9)整除。而第二括號內(nèi)各數(shù)之和,恰好是原數(shù)478323各個數(shù)位上數(shù)字之和。
∵4+7+8+3+2+3=27是3(9)的倍數(shù),故知478323是3(9)的倍數(shù)。
在實際考察4+7+8+3+2+3是否被3(9)整除時,總可將3(9)的倍數(shù)劃掉不予考慮。
即考慮被3整除時,劃去7、2、3、3,只看4+8,考慮被9整除時,由于7+2=9,故可直接劃去7、2,只考慮4+8+3+3即可。
如考察9876543被9除時是否整除,可以只考察數(shù)字和(9+8+7+6+5+4+3)是否被9整除,還可劃去9、5+4、6+3,即只考察8
如問3是否整除9876543,則先可將9、6、3劃去,再考慮其他數(shù)位上數(shù)字之和。由于3整除(8+7+5+4),故有3整除9876543。
實際上,一個整數(shù)各個數(shù)位上數(shù)字之和被3(9)除所得的余數(shù),就是這個整數(shù)被3(9)除所得的余數(shù)。
7.一個整數(shù)的奇數(shù)位數(shù)字和與偶數(shù)位數(shù)字和的差如果是11的倍數(shù),那么這個整數(shù)也是11的倍數(shù)。(一個整數(shù)的個位、百位、萬位、…稱為奇數(shù)位,十位、千位、百萬位……稱為偶數(shù)位。)
如判斷42559能否被11整除。
42559=4×10000+2×1000+5×100+5×10+9
=4×(9999+1)+2×(1001-1)+5(99+1)
+5×(11-1)+9
=(4×9999+2×1001+5×99+5×11)+(4-2+5-5+9)
=11×(4×909+2×91+5×9+5)+(4-2+5-5+9)
前一部分顯然是11的倍數(shù)。因此判斷42559是否11的倍數(shù)只要看后一部分4-2+5-5+9是否為11的倍數(shù)。
而4-2+5-5+9=(4+5+9)-(2+5)恰為奇數(shù)位上數(shù)字之和減去偶數(shù)位上數(shù)字之和的差。
由于(4+5+9)-(2+5)=11是11的倍數(shù),故42559是11的倍數(shù)。
特別推薦:考試吧—華圖國家公務員面授培訓 訂書熱線:010-62199365
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |